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Chapter 1

Introduction

1.1 What is Gretl?

Gretl, which is an acronym for Gnu Regression, Econometrics and Time-
series Library, is an easy to use, reasonably powerful software package for doing
econometrics. It is available for download at no charge from http://gretl.
sourceforge.net. Unlike software sold by commercial vendors (SAS, Eviews,
Shazam to name a few) you may redistribute and/or modify gretl under the
terms of the GNU General Public License (GPL) as published by the Free
Software Foundation.

Gretl comes with many sample data files and a database of US macroeco-
nomic time series. From the gretl web site, you have access to more sample
data sets from many of the leading textbooks in econometrics, including ours
Undergraduate Econometrics by Hill et al. (2001). It can be used to compute
the least-squares, weighted least squares, nonlinear least squares, instrumental
variables least squares, logit, probit, tobit and a number of time series estima-
tors. It calls another GNU program called gnuplot to generate graphs and is
capable of generating output in LaTeX format. As of this writing gretl is under
development so you can probably expect some bugs.

The driving force behind gretl is Allin Cottrell of Wake Forest University.
He is currently very active in fixing any bugs one may find in gretl. Hence, if
you encounter what you think is a bug you can either modify the C source code

to fix it yourself or you can contact Professor Cottrell. I know which option I
like!
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1.2 Installing Gretl

To install gretl on your system, you will need to download the appropriate
executable file for the computer platform you are using. For Microsoft Windows
users the appropriate site is http://gretl.sourceforge.net/win32/. One
of the nice things about gretl is that Macintosh and Linux versions are also
available out of the box. If you are using some other exotic computer system,
you can obtain the source code and compile it whatever form you’d like. No
guarantees that this will work, but this is not something available with any
commercial software I can think of.

Gretl depends on some other (free) programs to perform some of its magic.
If you install gretl on your Mac or Windows based machine using the appropri-
ate executable file provided on gretl’s download page then everything you need
to make gretl work should be installed as part of the package. If, on the other
hand, you are going to build your own gretl using the source files, you may need
to install some of the supporting packages yourself. I assume that if you are
savvy enough to compile your own version of gretl then you probably know what
to do. For most, just install the self-extracting executable, gretl_install.exe,
available at the download site. Gretl comes with an Adobe pdf manual that
will guide you through installation and introduce you to the interface. I suggest
that you start with it, paying particular attention to chapters 1 and 2 which
discuss installation in more detail and some basics on how to use the interface.

Since this manual is based on the examples from Undergraduate Economet-
rics by Hill et al. (2001) then you should also download and install the accom-
panying data files that go with this book. The file is available at

http://spears.okstate.edu/~ladkins/class/4213/gretl/UEsetup.exe.

This is a self-extracting windows file that will install the UE data sets onto the
c:\userdata\gretl\data directory of your harddrive. If you have installed
gretl in any other place besides c:\userdata\gretl then you are given the
opportunity to specify a new location in which to install the program during
setup.


http://gretl.sourceforge.net/win32/
http://spears.okstate.edu/~ladkins/class/4213/gretl/UEsetup.exe

Chapter 2

Gretl Basics

There are several different ways to work in gretl. The one most use takes
advantage of its built in graphical user interface (GUI). Those of you who grew
up using MS Windows or the Macintosh will find this way of working quite easy.
Basically, you are able to point the mouse at what you want to accomplish, fill
in the desired options from the menus, and click OK. Gretl is using your user
input, delivered by mouse clicks and a few keystrokes to generate computer code
that is executed in the background.

Gretl offers a command line interface as well and those of you who use
Linux or are old DOS warriors may want to use it this way. The command line
version is launched by executing gretlcli in a console window. If you don’t
know what a console window is, then you can file this piece of information away
and stick with the GUI.

One of the great things about gretl is that it accumulates this code into
a script file that can be run in its entirety at another time. So, if you have
completed an analysis that involves many sequential steps, the script can be
open and run in one step to get you to the desired result. You can also use
the script environment to conduct Monte Carlo studies in econometrics. Monte
Carlo studies use computer simulation (sometimes referred to as experiments)
to study the properties of a particular technique. This is especially useful when
the mathematical properties of your technique are particularly difficult to as-
certain. In the exercises below, you will learn a little about doing these kinds
of experiments in econometrics.

In figure 2.1 below is the main window in gretl.

Across the top of the window you find the Menu Bar. From here you import
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Figure 2.1: The main window for gretl’s GUI
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and manipulate data, analyze data, and manage output. At the bottom of the
window is the gretl toolbar. This contains a number of useful utilities that can
be launched from within gretl. Among other things, you can get to the gretl web
site from here, open the pdf version of the manual, or open the MS Windows
calculator (very handy!). More will be said about these functions later.



Chapter 3

Introduction to
Econometrics

Obtaining data in econometrics and getting it into a format that can be
used by your software can be challenging. There are dozens of different pieces
of software and many use proprietary data formats that make transferring data
between applications difficult. You’ll notice that the authors of your book have
provided data in several formats for your convenience. In this chapter, we will
explore some of the data handling features of gretl and show you how to 1)
access the data sets that accompany your textbook 2) how to bring one of those
data sets into gretl 3) how to list the variables in the data set 4) how to modify
and save your data. Gretl offers great functionality in this regard. Through
gretl you have access to a very large number of high quality data sets from other
textbooks as well as from sources in industry and government. Furthermore,
once opened in gretl these data sets can be exported to a number of other
software formats.

In the beginning, I will illustrate the examples using a number of figures (an
excessive number to be sure). As you become familiar with gretl the frequency
of these figures will diminish and I will direct you to the proper commands
using words only. More complex series of commands may require you to use
the gretl script facilities which basically allow you to write simple programs in
their entirety, store them in a script file, and then execute all of the commands
in a single batch. The convention used will be to refer to menu items as A>B>C
which indicates that you are to click on option A on the menu bar, then select B
from the pulldown menu and further select option C from B’s pulldown menu.
All of this is fairly standard practice, but if you don’t know what this means,
ask your instructor now.
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First, take a look at Table 1.1 in your textbook. It contains monthly sales
data for Honda Accords. In this exercise, you will learn to import data from
gretl and be able to reproduce this table.

Open the main gretl window and click on File>Open data>sample file.
The result appears in figure 3.1.

Figure 3.1: Opening sample data files from gretl’s main window

o -lolx
Utlities  Session Data Sample  VYarisble  Model Help |
S user file. .. Chrl+0 I
Append data 3 |
H Save data Chrl+s
Save data as 2 import C5V....
Export data » import ASCIL..
ga_ e et st impork Cckave, ..
impork BOX...
Browse databases 3 import Excel...
Create data set 3 impark GRumeric, .,
Wiew cammand log 1, table1-1.gdt
Open cammand file 3 2, i ek
. 3. clothes.gdt
Mew command File 3
4, wacan.gdt
Preferences 3
&l Exit Chri+y
Undated: Full range 1 - 10
|8 | BB | e |2 & | S

This will open another window that contains tabs for each of the data com-
pilations that you have installed in the gretl/data directory of your program. If
you installed the data sets that accompany this book using the self extracting
windows program then a tab will appear like the one shown in figure 3.2.

Scroll down to find the data set called ‘tablel-1’ and open it using the ‘open’
button at the bottom of the window. This will bring the variables that make up
Table 1.1 into gretl. At this point use the Data tab and select Display values
as shown in figure 3.3.

From the this pulldown menu a lot can be accomplished. You can edit,
sort, graph, and add to your data. You can also perform simple tests, obtain
summary statistics like the sample mean and standard deviation, and obtain
correlations.

Notice in figure 3.1 that gretl gives you the opportunity to import data from
several other formats, including ASCII, CSV, EXCEL and others. Also, from
the Data pulldown menu you can append observations onto the end of a data set
and export a data set to another format. If you click on Browse databases>on
database server you will be taken to a web site (provided your computer is
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Figure 3.2: This is Gretl’s data files window. Notice that in addition to UE2,
data sets from Ramanathan (2002), Davidson and MacKinnon (2004), Greene
(2003), Stock and Watson (2003), and Wooldridge (2003) are also installed on
my system.
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Figure 3.3: Use the Data>Display values>all variables to list the data set.
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connected to the internet) that contains a very large number of high quality
data sets. You can pull any of these data sets into gretl in the same manner as
that described above for the UE, 2nd edition data sets. If you are required to
write a term paper in one of your classes, these data sets may provide you with
all the data that you need.



Chapter 4

Some Basic Probability
Concepts

In this chapter, you learned some basic concepts about probability. Since
the actual values that economic variables take on are not actually known before
they are observed, we say that they are random. Probability is the theory that
helps us to express uncertainty about the possible values of these variables. Each
time we observe the outcome of a random variable we obtain an observation.
Once observed, its value is known and hence it is no longer random. So, there
is a distinction to be made between variables whose values are not yet observed
(random variables) and those whose values have been observed (observations).
Keep in mind, though, an observation is merely one of many possible values
that the variables can take. Another draw will usually result in a different value
being observed.

A probability distribution is just a mathematical statement about the pos-
sible values that our random variable can take on. The probability distribution
tells us the relative frequency (or probability) with which each possible value
is observed. In their mathematical form probability distributions can be rather
complicated; either because there are too many possible values to describe suc-
cinctly, or because the formula that describes them is complex. In any event,
it is common summarize this complexity by concentrating on some simple nu-
merical characteristics that they possess. The numerical characteristics of these
mathematical functions are often referred to as parameters. Examples are the
mean and variance of a probability distribution. The mean of a probability
distribution describes the average value of the random variable over all of its
possible realizations. Conceptually, there are an infinite number of realizations
therefore parameters are not known to us. As econometricians, our goal is to
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try to estimate these parameters using a finite amount of information available
to us. We collect a number of realizations (called a sample) and then estimate
the unknown parameters using a statistic. Just as a parameter is an unknown
numerical characteristic of a probability distribution, a statistic is an observ-
able numerical characteristic of a sample. Since the value of the statistic will
be different for each sample drawn, it too is a random variable. The statistic is
used to gain information about the parameter.

In chapter 2 of UE, you used the concept of expected values to obtain certain
information about probability distributions. For instance, if X is a random vari-
able that can take on the values 0,1,2,3 and these values occur with probability
1/6, 1/3, 1/3, and 1/6, respectively. The mean of the probability distribution,
designated p, is obtained analytically using its expected value.

1 1 1 1 3

u:E[X}:Zycf(gc):()~6+1~§+2.§+3~6:5 (4.1)

So, 1 is a parameter. Its value can be obtained mathematically if we know
the probability density function of the random variable, X. If this probability
distribution is known, then there is no reason to take samples or to study statis-
tics! We can ascertain the mean, or average value, of a random variable without
every firing up our calculator. Of course, in the real world we only know that
the value of X is not known before drawing it and we don’t know what the
actual probabilities are that make up the density function, f(z). In order to
figure out what the value of p is, we have to resort to different methods. In this
case, we try to infer what it is by drawing a sample and estimating it using a
statistic.

One of the ways we bridge the mathematical world of probability theory
with the observable world of statistics is through the concept of a population. A
statistical population is the collection of individuals that you are interested in
studying. Since it is normally too expensive to collect information on everyone of
interest, the econometrician collects information on a subset of this population—
in other words, he takes a sample.

The population in statistics has an analogue in probability theory. In prob-
ability theory one must specify the set of all possible values that the random
variable can be. In the example above, a random variable is said to take on
0,1,2, or 3. This set must be complete in the sense that the variable cannot take
on any other value. In statistics, the population plays a similar role. It consists
of the set that is relevant to the purpose of your inquiry and that is possible to
observe. Thus it is common to refer to parameters as describing characteristics
of populations. Statistics are the analogues to these and describe characteristics
of the sample.

This roundabout discussion leads me to an important point. We often use the
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words mean, variance, covariance, correlation rather casually in econometrics,
but their meanings are quire different depending on whether we are refereing
to a probability distribution or a sample. When referring to the analytic con-
cepts of mean, variance, covariance, and correlation we are specifically talking
about characteristics of a probability distribution; these can only be ascertained
through complete knowledge of the probability distribution functions. It is com-
mon to refer to them in this sense as population mean, population variance, and
so on. These concepts do not have anything to do with samples or observations!

In statistics we attempt to estimate these (population) parameters using
samples and explicit formulae. For instance, we might use the average value
of a sample to estimate the average value of the population (or probability
distribution).

‘ Probability Distribution ‘ Sample
mean EX]=pn Iy a =1z
variance E[X —p? =02 L3 (2 —2)? =82

When you are asked to obtain the mean or variance of random variables,
make sure you know whether the person asking wants the characteristics of the
probability distribution or of the sample. The former requires knowledge of the
probability distribution and the later requires a sample.

In gretl you are given the facility to obtain sample means, variances, co-
variances and correlations. You are also given the ability to compute tail prob-
abilities using the normal, t-, F and chisquare distributions. First we’ll examine
how to get summary statistics.

Summary statistics usually refers to some basic measures of the numberical
characteristics of your sample. In gretl , summary statistics can be obtained
in at least two different ways. Once your data are loaded into the program, you
can select Data>Summary statistics from the pull down menu. Which leads to
the output in figure 4.2. Gretl computes the sample mean, median, minimum,
maximum, standard deviation (S.D.), coefficient of variation (C.V.), skewness
and excess kurtosis for each variable in the data set. You may recall from your
introductory statistics courses that there are an equal number of observations in
your sample that are larger and smaller in value than the median. The standard
deviation is the square root of your sample variance. The coefficient of variation
is simply the standard deviation divided by the sample mean. Large values of
the C.V. indicate that your mean is not very precisely measured. Skewness
is a measure of the degree of symmetry of a distribution. If the left tail (tail
at small end of the the distribution) extends over a relatively larger range of
the variable than the right tail, the distribution is negatively skewed. If the
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Figure 4.1: Choosing summary statistics from the pull down menu
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Figure 4.2: Choosing summary statistics from the pull down menu yields these
results.

I Summary Statistics, using the observations 1 - 40
Variable HEAN HED LAN HIN MAX

v 130.31 1z0.71 S5z.z50 269.03

x 698.00 71z2.30 258.30 1154.6
Variable 3.D. C.¥V. SEEW EXC3KURT
v 45.15%9 0.34654 1.03458 1.1297

b 198.23 0.28399 0.21866 -0.014140
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right tail covers a larger range of values then it is positively skewed. Normal
and t-distributions are symmetric and have zero skewness. The x?2 is positively
skewed. Excess kurtosis refers to the fourth sample moment about the mean
of the distribution. ‘Excess’ refers to the kurtosis of the normal distribution,
which is equal to three. Therefor if this number reported by gretl is positive,
then the kurtosis is greater than that of the normal; this means that it is more
peaked around the mean than the normal. If excess kurtosis is negative, then
the distribution is flatter than the normal.

Sample Statistic \ Formula
Mean Sai/n==7
Variance 3 (@ —7)? =52

V2]
I
5
[V

Standard Deviation

Coefficient of Variation s/
Skewness LS (s — 7)3 /83
Excess Kurtosis L3 (w; — @)t /s* -3

You can also use gretl to obtain tail probabilities for various distributions.
For example if X ~ N(3,9) then P(X > 4) is

P[X > 4] = P[Z > (4 — 3)/V9] = P[Z > 0.334]=0.3694 (4.2)

To obtain this probability, you can use the Utilities>p value finder from
the pull down menu. Then, give gretl the value of X, the mean of the distrib-
ution and its standard deviation using the dialog box shown in figure 4.3. The
result appears in figure 4.4.

In your book you are given another example X ~ N(3,9) then find P(4 <
X <6)is

PA<X<6)|=P0334<Z<1]=P[Z<1]-P[Z<.33  (43)

Take advantage of the fact that P[Z < z] = 1 — P[Z > z] to obatain use the
pvalue finder to obtain:

(1—0.1587) — (1 — 0.3694) = (0.3694 — 0.1587) = 0.2107 (4.4)

Note, this value differs slightly from the one given in your book due to rounding
error that occurs from using the normal probability table. When using the table,
the P[Z < .334] was truncated to P[Z < .33]; this is because your tables are only
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Figure 4.3: Dialog box for finding right hand side tail areas of various probability
distributions.

% gretl: p—?ﬂ!ﬂe finder =100 x|

nn:urmall k |chi-square| F |gamma|

walue |4

MeEan |3

std. dewiation |3

@ DK K Close

Figure 4.4: Results from the p value finder of P[X > 4] where X ~ N(3,9).
Note, the area in the tail of this distribution to the right of 4 is .369441.

&7 gretl: p-value - O] x
a

Standard normal: area to the right of 0.333333 = 0.365441
[two-tailed walue = 0.7355833; complement = 0.261117)

Close
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taken out to two decimal places and a practical decision was made by the authors
of your book to forgo interpolation (contrary to what your Intro to Statistics
professor may have told you, it is hardly ever worth the effort to interpolate
when you have to do it manually). Gretl, on the other hand computes this
probability out to machine precision as P[Z < %] Hence, a discrepancy occurs.
Rest assured though that these results are, aside from rounding error, the same.



Chapter 5

Simple Linear Regression

In this chapter you are introduced to the simple linear regression model
which is then estimated using the principle of least squares.

5.1 Retrieve the Data

The first step is to load the food expenditure and income data into gretl.
The data file is included in your gretl sample files provided that you have
installed the UE2 data supplement that is available from our website. See
section 1.2 for details.

Load the data from Table 3.1 of your textbook. Recall, this is accomplished
by the commands File>Open data>sample files from the menu bar.! Choose
Table3-1 from the list. When you bring the file containing the data into gretl
your window will look like the one in figure 5.1. Notice that in the Descriptive
label column is blank for the two variables. Before you graph your output or
to generate output for a report or paper you may want to label your variables
to make the output easier to organize. This can be accomplished by editing the
attributes of the variables.

To do this, first highlight the variable whose attributes you want to edit,
then go up to the menu bar and click Variables>Edit attributes from the
pull down menus (see figure 5.2. This yields a dialog box where you can assign
variable descriptions and display names. Describe and label the variable y as

L Alternately, you could click on the open data button on the toolbar. It’s the one that
looks like a folder on the far right-hand side.

16
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Figure 5.1: Food Expenditure data is imported from Table3-1.
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Figure 5.2: Selecting Edit attributes from gretl’s pulldown menus
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‘Food Expenditure’” and x as ‘Weekly Income.” An easier way to bring up the
variable edit dialog is to highlight the desired variable and to execute a right
mouse click. This brings up a pull down menu that allows you to do a number
of things to the selected variable, including edit its attributes.

Figure 5.3: Variable edit dialog box
% gretl: variable attributes™’ -0 =|

name af wariable: IH

description:

display name (shown in graphs): I

@ I x Cancel

Help |

5.2 Graph the Data

To generate a graph of the Food Expenditure data that resembles the one

in figure 3.6 of your textbook, you can use the button on the gretl toolbar
(third button from the right). Clicking this button brings up a dialog to plot
the two variables against one another. Figure 5.4 shows this dialog where =
is placed on the x-axis and y on the y-axis. The result appears in figure 5.5.

Notice that the labels applied above now appear on the axes of the graph.

Figure 5.5 plots Food Expenditures on the y axis and Weekly Income on the
X. Gretl , by default, also plots the fitted regression line. More on this later.

5.3 Estimate the Food Expenditure relationship

now you are ready to use Gretl to estimate the parameters of the Food
Expenditure equation.

y=p01+ Pox+e (5.1)

From the menu bar, select Model>0rdinary Least Squares from the pull down
menu to generate the dialog shown in figure 5.6.
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Figure 5.4: Use the dialog to plot of the Food Expenditure (y) against Weekly

Income (x)
&' gretl: define graph k 1O =l
#Y scatberplot
_ ¥-ais variable
%
Choose- = | Ix
‘-axis variables
¥
<- Remave |
@QK | %gear x Cancel ‘E—" Help |
Figure 5.5: XY plot of the Food Expenditure data
Food Expenditure versus Weekly Incnnﬁ {with least squares fit)
300 T T T T T . T T T
N
250 - 1
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s0
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Figure 5.6: From the menu bar, select Model>Ordinary Least Squares to
open this dialog box

'1 gretl: specify model k — |EI|£|

OLs

const Dependent variable

¥
o Choose -= | I

[ Set as default

Independent variables

Add -= |

consk

<- Remave |

[ Robust standard errors configurel
Do Y Clear

Help |

x Cancel

From this dialog you'll need to tell gretl which variable to use as the de-
pendent variable and which is the independent variable. Notice that by default,
gretl assumes that you want to estimate an intercept (1) and includes this
in the independent variable list by default. To include x as an independent
variable, highlight it with the cursor and click the Add button.

An easy way to run a regression is using the gretl console. The gretl console

is opened by clicking the console button on the toolbar, EJ This button opens
the console shown in figure 5.6.

At the question mark in the console simply type
OLS y const x

to estimate your regression function. The syntax is very simple, OLS tells gretl
that you want to estimate a linear function using ordinary least squares. The
first variable listed will be your dependent variable and any that follow the
independent variables. These names must match the appropriate names of your
variables given in your data set. Since ours are named, y and x, respectively,
these are the names used here. Don’t forget the constant (const).
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Figure 5.7: Gretl console. From this window you can type in gretl commands
directly and perform analyses very quickly—if you know the proper gretl com-
mands. If not, then you can rely on the GUI and dialog boxes to guide you.
ol x|
[ x

gretl console: type 'help' for a list of conmands
2|

Clase:

This yields the following output:

Model 3: OLS estimates using the 40 observations 1-40
Dependent variable: y

Variable Coefficient Std. Error t-statistic p-value
const 40.7676 22.1387 1.8415 0.0734
X 0.128289 0.0305393 4.2008 0.0002

An equivalent way to present results, especially in very small models like
the simple linear regression, is to use equation form. In this format, the gretl
results are:

y =40.7676 + 0.128289 x
(1.841) (4.201)

T =40 R?*=02991 F(1,38) =17.647 & = 37.805

(t-statistics in parentheses)



Chapter 6

Sampling Properties of
Least Squares Estimator

Perhaps the best way to illustrate the sampling properties of least squares
is through an experiment. In section 4.2.1 of your book you are presented with
results from 10 different regressions (UE2 Table 4.1). In this chapter of the
manual, you will generate 100 samples of data from the food expenditure data,
estimate the slope and intercept parameters with each data set, and then study
how the least squares estimator performed over those 100 different samples.
What will become clear is this, the outcome from any single sample is a poor
indicator of the true value of the parameters. Keep this in mind whenever you
estimate a model with what is invariably only 1 sample or instance of the true
(but always unknown) data generation process.

We start with the food expenditure model:

y=p01+ Pz +e (6.1)

where y is total food expenditure for the given time period and z is income.
Suppose further that we know how much income each of 40 households earns
in a week. Additionally, we know that on average a household spends at $50
on food whether it has income or not and that an average household will spend
twelve cents of each new dollar of income on additional food. In terms of the
regression this translates into parameter values of 5; = 50 and 2 = 0.12.

Our knowledge of any particular household is considerably less. We don’t
know how much it actually spends on food in any given week and other than
differences based on income, we don’t know how their food expenditures might
otherwise differ. Food expenditures surely vary for reasons other than income.

22
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Some families are larger than others, tastes and preferences differ, and some
may travel more often or farther making food consumption more costly. For
whatever reasons, it is impossible for us to know beforehand exactly how much
any household will spend on food, even if we know how much income it earns.
All of this uncertainty is captured by the error term in the model. For the sake
of experimentation, suppose we also know that e ~ N (0, 352).

With this knowledge, we can study the properties of the least squares esti-
mator by generating samples of size 40 using the known data generation mech-
anism. We generate 100 samples using the known parameter values, estimate
the model for each using least squares, and then use summary statistics to de-
termine whether least squares, on average anyway, is either very accurate or
precise. So in this instance, we know how much each household earns, and we
know how much the average household spends on food that is not related to
income (f; = 50) and how much that expenditure rises on average as income
rises. What we do not know is how any particular household’s expenditures
are responds to income or how much is autonomous.

A single sample can be generated in the following way. The systematic
component of food expenditure for the ith household is 5040.12%x;. This differs
from its actual food expenditure by a random amount that varies according to a
normal distribution having zero mean and standard deviation equal to 35. So, we
use computer generated random numbers to generate a random error, w;, from
that particular distribution. We repeat this for the remaining 39 individuals.
The generates one Monte Carlo sample and it is then used to estimate the
parameters of the model. The results are saved and then another Monte Carlo
sample is generated and used to estimate the model and so on.

In this way, we can generate as many different samples of size 40 as we
desire. Furthermore, since we know what the underlying parameters are for
these samples, we can later see how close our estimators get to revealing these
true values.

Now, computer generated random numbers are not actually random in the
true sense of the word; they can be replicated exactly if you know the mathe-
matical formula used to generate them and the ‘key’ that initiates the sequence.
In most cases, these numbers behave as if they were in fact randomly generated
by a physical process.

To conduct an experiment using least square in gretl one could use the
script found in figure 6.1.

Let’s look at what each line accomplishes. The first line

open c:\userdata\gretl\data\UE2\table3-1.gdt
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Figure 6.1: In the gretl console window you can use the following commands
to execute a Monte Carlo study of least squares.
=gl xl
DECRPR RS E x

open ciiuserdatalgretlidatalUE2\vtabled-1.gdt
Joop 100 -- progressive

genr u = 35*normal()

genr w1 = 50 + .12%X + u

ols ¥1 const x

genr bl cDefftconst]l

genr b2 coeff ()

print bl b2

store coeffs.gdt bl b2

endloop

Clase: I

opens the food expenditure data set that resides in the UE2 folder of the data
directory. The loop construct in gretl begins with the command loop NMC
--progressive and ends with endloop. NMC in this case is the number of
Monte Carlo samples you want to use and the option --progressive is a com-
mand that suppresses the individual output at each iteration from being printed
and to allows you to store the results in a file.

Within this loop construct, you tell gretl how to generate each sample and
state how you want that sample to be used. The data generation is accomplished
here as

genr u = 35*normal()
genr yl1 = 50 + .12*x + u

The genr command is used to generate new variables. In the first line u is
generated by muliplying a normal random variable by the desired standard
deviation. Recall, that for any constant, ¢ and random variable, X, Var(cX) =
c*Var(X). normal() produces a computer generated standard normal random
variable. The next line adds this random element to the systematic portion of
the model to generate a new sample for food expenditures (using the known
values of income in x).

Next, the model is estimated using least squares. Then, the coefficients are
stored internally in variables you create a and b (I called them bl and b2, but

you can name them as you like). These are then stored to a data set coeffs.gdt.

After executing the script, gretl prints out some summary statistics to the
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screen. These appear below in figure 6.2. Note that the average value of the

Figure 6.2: The summary results from 100 random samples of the Monte Carlo
experiment.

&7 gretl: script output =10}=
=olxl
KRS

oI T CUNST [«]
genr bl = coefficonst)
genr b2 = coeff(x)
print bl h:

store coeffs.gdt bl b2
endloop

WOV WY

OL3 estimates using the 40 obserwvations 1-40
Statistics for 100 repetitions
Dependent wvariable: gl

mean of std. dev. of mean of std. dev. of

estimated estimated estimated estimated

Wariable coefficients coefficients std. errors std. errors

[u}} COnst 51.7180 z21.3078 19.8435 2.16608

21 X 0.11789¢6 0.0299878 0.0273731 0.00298798
Variable mean std. dev.
bl 51.7180 21.3078
hZ 0.117896 0.0299878

printing 100 wvalues of wvarisbles to coeffs.gdt
-

Close |

intercept is about 51.718. This is getting close to the the truth. The average
value of the slope is 0.1179, also close to the true value. If you were to repeat
the experiments with larger numbers of Monte Carlo iterations, you will find
that these averages get closer to the values of the parameters used to generate
the data. This is what it means to be unbiased. Unbiasedness only has meaning
within the context of repeated sampling. In your experiments, you generated
many samples and averaged results over those samples to get closer to the truth.
In actual practice, you do not have this luxury. In practice you have one sample
and the proximity of your estimates to the true values of the parameters is
always unknown.

After executing the script, open the coeffs.gdt data file and view the data.
From the example this yields the output in figure 6.3. Notice that even though
the actual value of 81 = 50 there is considerable variation in the estimates. In
sample 12 it was estimated to be 28.19. and in sample 8 it was nearly 81.15.
Likewise, (5 also varies around its true value of .12. Notice that the estimates
are never equal to the true parameter value!



CHAPTER 6. SAMPLING PROPERTIES OF LEAST SQUARES ESTIMATOR26

Figure 6.3: The results from the first 23 sets of estimates from the 100 random
samples of the Monte Carlo experiment.

‘%" gretl: display data o ]
[
Chs= bl b2
1 52 .96300 0.1145410
2 62 .97320 0.1153540
3 g3.96250 0.0823156
4 31.06300 0.1344480
5 34.36830 0.1534900 N
& 44 .04050 0.1337570
7 11.&&540 0.1814350
5] 81.14950 0.0737490
Q 45. 26680 0.13254380
10 J6.42090 0.1325590
11 49, 61950 0.1304580
12 28.19680 0.1450390
13 &60.36390 0.1099700
14 52 .92350 0.1057650
15 g1.91390 0.0914110
16 70.72780 0.0935937
17 38.33930 0.1391610
13 78.33640 0.0767958
19 S50.90170 0.1161020
20 33.21820 0.1395430
21 45,.21570 0.1261310
22 65 .34540 0.1083 650
23 03.43350 0.0765881
o 47 4 ccon [ R L & A Tn T ﬂ
Close |




Chapter 7

Inference in the Simple
Linear Regression Model

7.1 Confidence Intervals

The purpose of confidence intervals is to give the user some notion of how
variable the parameter estimates are. One way of doing this is to present the
least squares parameter estimate along with its estimated standard error. The
estimated standard error is an estimate of how precisely least squares is able to
measure the parameter of interest.

The confidence interval serves a similar purpose, though it is much more
straightforward to interpret because it gives you upper and lower bounds be-
tween which the unknown parameter will lie with a given probability.'

In gretl you have to do a little work to compute confidence intervals. They
can be constructed manually using the genr command, though you can let
gretl do the arithmetic. To construct an interval in gretl you will first need to
look up the appropriate critical value from a table in order to get the correct
computation.

IThis is probability in the frequency sense. Much ado is made of this (incorrectly I think)
in statistics as you are often given stern warnings not to interpret a confidence interval as
containing the unknown parameter with the given probability. However, probability in its
frequency definition refers to the long run relative frequency with which some event occurs.
If this is what probability is, then saying that a parameter falls within an interval with given
probability means that intervals so constructed will contain the parameter that proportion of
the time.

27
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Here is how it works. Taking equation (5.1.13) from your text
Plby — tese(ba) < fa < bg +tese(be)] =1 — « (7.1)

Recall that by is the least squares estimator of B2, and that se(bs) is its estimated
standard error. The constant ¢, is the /2 critical value from the t-distribution
and « is the total desired probability associated with the “rejection” area (the
area outside of the confidence interval).

In gretl you’ll need to look up t. either in a statistical table or using the
Utilities>Statisticaltables dialog contained in the program. The gretl
dialog box is shown in figure ?7. Pick the tab for the t distribution and tell
gretl how many degrees of freedom your t-statistic has. Once you do, click
on OK and choose the the 0.025 critical value for the t3g distribution, which is
2.024.

Figure 7.1: Obtaining critical values using the built in statistical tables in gretl.
% ogretk: statistiﬁal ta B ] |

niormal ik hi—squarel F | D |

dfl

@ (0] 4 | X Close

Then generate the lower and upper bounds (using the gretl console) with
the commands:

open c:\userdata\gretl\data\UE2\table3-1.gdt
ols y const x

genr 1lb = coeff(x) - 2.024*stderr(x)

genr ub = coeff(x) + 2.024*stderr(x)

print 1b ub

The first line opens the data set. The second line (ols) minimizes the sum
of squared errors in a linear model that has y as the dependent variable with a
constant and x as independent variables. The next two lines generate the lower
and upper bounds for the 95% confidence interval for the slope parameter (3s.
The last line prints the results of the computation.

The consequences of repeated sampling can be explored using a simple Monte
Carlo study. In this case, we will add the two statements that compute the lower
and upper bounds to our previous program listed in figure 6.1.
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The new script looks like this:

open c:\userdata\gretl\data\UE2\table3-1.gdt
loop 100 -- progressive

genr u = 35%normal ()

genr yl = 50 + .12%x + u

ols yl1 const x

genr bl = coeff(const)

genr b2 = coeff (x)
genr sl = stderr(const)
genr s2 = stderr(x)

# 2.024 is the .025 critical value from the t(38) distribution
genr clL = bl - 2.024%s1

genr clR = bl + 2.024%s1

genr c2L = b2 - 2.024x*s2

genr c2R = b2 + 2.024%*s2

print bl

print b2

store coeffs.gdt bl b2 clL clR c2L c2R

endloop

The results are stored in the gretl data set coeffs.gdt. Opening this data
set (open C:\userdata\gretl\user\coeffs.gdt) and examining the data will
reveal interval estimates that vary much like those in Table 5.2 or your textbook.

7.2 Hypothesis Tests

Hypothesis testing allows us to confront any prior notions we may have about
the model with what we actually observe. Thus, if before drawing a sample, I
believe that autonomous weekly food expenditure is no less than $40, then once
the sample is drawn I can determine via a hypothesis test whether experience
is actually consistent with this belief.

In section 5.2.5 of your book the authors test the null hypothesis that G, =
0.10 against the alternative that it is not (52 # 0.10). The test statistic is:

t= (bg — 0.10)/S€(b2) ~ t38 (72)

provided that S = 0.10 (the null hypothesis is true). Select o« = 0.05 which
makes the critical value for the two sided alternative (82 # 0.10) equal to 2.024.
The decision rule is to reject Ho in favor of the alternative if the computed value
of your t statistic falls within the rejection region of your test; that is if it is less
than -2.024 or greater than 2.024.
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The information you need to compute ¢ is on the printout of your least
squares estimation. Thus,

Model 2: OLS estimates using the 40 observations 1-40
Dependent variable: y

Variable Coefficient Std. Error t-statistic p-value
const 40.7676 22.1387 1.8415 0.0734
X 0.128289 0.0305393 4.2008 0.0002

The computations
t = (by — 0.10)/se(bs) = (.1282 — .10)/0.0305 = 0.9263 (7.3)

Since this value is not within the rejection region, then we do not have enough
evidence to dissuade us from our null hypothesis that the coefficient is 0.10; the
null hypothesis is not rejected at this level of significance.

Figure 7.2: The dialog box for obtaining p-values using the built in statistical
tables in gretl.

=100 ]

5 gretl: p-value findﬁr

normal £ |chi—square F Igammal

o |38

value |.1282|

mean I.ID

std, deviation [0.0305

@ Ok | X Close

We can use gretl to get the p-value for this test using the Utilities pull
down menu. In this dialog, you have to fill in the degrees of freedom for your
t-distribution (38), the value of by (.1282), its value under the null hypothesis—
something gretl refers to as ‘mean’ (.10), and the estimated standard error from
your printout (.0305). This will yield the information

t(38): area to the right of 0.92459 = 0.180507
(two-tailed value = 0.361014; complement = 0.638986)

This indicates that the area in one tail is 0.1805 and that the area in both tails
totals 0.36104.



Chapter 8

Using R with Gretl

Another feature of gretl that makes it extremely powerful is its ability to
work with another free program called R. R is actually a programming language
for which many statistical procedures have been written. Although gretl is
reasonably powerful, there are still many things that it won’t do. The ability
to export gretl data into R makes it possible to do some sophisticated analysis
with relative ease.

Quoting from the R web site

R is a language and environment for statistical computing and graph-
ics. It is a GNU project which is similar to the S language and envi-
ronment which was developed at Bell Laboratories (formerly AT&T,
now Lucent Technologies) by John Chambers and colleagues. R can
be considered as a different implementation of S. There are some
important differences, but much code written for S runs unaltered
under R.

R provides a wide variety of statistical (linear and nonlinear mod-
elling, classical statistical tests, time-series analysis, classification,
clustering, ...) and graphical techniques, and is highly extensible.
The S language is often the vehicle of choice for research in statistical
methodology, and R provides an Open Source route to participation
in that activity.

One of R’s strengths is the ease with which well-designed publication-
quality plots can be produced, including mathematical symbols and
formulae where needed. Great care has been taken over the defaults
for the minor design choices in graphics, but the user retains full
control.
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R is available as Free Software under the terms of the Free Software
Foundation’s GNU General Public License in source code form. It
compiles and runs on a wide variety of UNIX platforms and similar
systems (including FreeBSD and Linux), Windows and MacOS.

R can be downloaded from http://www.r-project.org/ which is referred
to as CRAN or the comprehensive R archive network. To install R, you’ll need to
download it and follow the instructions given at the CRAN web site. Also, there
is an appendix in the gretl manual about using R that you may find useful.
The remainder of this brief appendix assumes that you have R installed and
linked to gretl through the programs tab in the File>Preferences>General
pull down menu. Make sure that the ‘Command to launch GNR R’ box points
to the RGui.exe file associated with your installation of R.

Once you have opened a data set in gretl , you may ‘start GNU R’ using the
Utilities pull down menu; when you start R in this fashion, the current gretl
data set will be transported into R’s required format. You’ll see the R console
which is shown in figure 8.1. To run the regression in R

Figure 8.1: The R console when called from Gretl

File Edit Misc Packages windows Help

e

R : Copyright 2005, The R Foundation for Statistical Computing
Version 2.1.0 (2005-04-18), ISEN 3-900051-07-0

R iz free software and comes with ABSOLUTELY NO WARRANTY.

Tou are welcome to redistribute it under certain conditions.

Type 'license()' or 'licencei)' for distribution details.
Natural language support but running in an English locale

R iz a ecollaborative project with many contributors.

Type 'contributorsi)' for more information and

‘zitationi)' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' fog on-line help, or

‘help.start{)' for = HTHL browser interfad® to help.

Type 'gf)' to quit R.

> gretldata <- read.table("c:/userdata/gretl/user/Rdata.tmp’)

> attachigretldata)

R 2.1.0 - A Language and Emviranment

fitols <- 1lm(y~x,data=gretldata)

Before going further, let me comment on this terse piece of computer code. First,


http://www.r-project.org/
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Figure 8.2: The lm(y x,data=gretldata) command estimates a linear regression
model with y as the dependent variable and x as an independent variable. R
automatically includes an intercept. To print the results to the screen, you have
to use the summary.lm() command.

W

gretldata <- read.table("c:/userdata/gretcl/user/Rdata.tmp”

R4

attachigretldata)
> fitols <- lmiy~x,data=gretldata
= summary. lm(ficols)

Call:
lm(forwula = ¥ ~ x, data = gretldatsa)

Residuals:
Min 10 Median 30 Hax
-71.75 -19.67 -5.87 17.75 ©G0.14

Coefficients:

Estimate 3td. Error t walues Prix|t|
[Intercept) 40.76756 22.13865 1.841 0.073369 .
x 0.1z2829 0.03054 4.201 0.000155 **%

Signif. codes: 0O '*%%' 0,001 '*%' 0,01 '+ 0.05 '.' 0.1 ' ' 1

Fesidual standard error: 37.51 on 35 degrees of freedom

Multiple R-Sguared: 0.3171, Adjusted R-squared: 0.2991
F-statistic: 17.65 on 1 and 38 DF, p-+valus: 0.0001550
=1

in R the symbol <- is used as the assignment operator; it assigns whatever is
on the right hand side (Im(y~x,data=gretldata)) to the name you specify on
the left (fitols). it can be reversed -> if you want to call the object to its right
what is computed on its left. Also, R does not bother to print results unless
you ask for them. This is handier than you might think, since most programs
produce a lot more output than you actually want and must be coerced into
printing less. The 1m command stands for ‘linear model” and in this example it
contains 2 arguments within the parentheses. The first is your simple regression
model. The dependent variable is y and the independent variable . They are
separated by the symbol  which substitutes in this case for an equals sign.
The other argument points to the data set that contains these two variables.
This data set, pulled into R from gretl, is by default called gretldata. There
are other options for the lm command, and you can consult the substantial pdf
manual to learn about them. In any event, you’ll notice that when you enter this
line and press the return key (which executes this line) R responds by issuing
a command prompt, and no results! To print the results from your regression,
you issue the command:

summary.lm(fitols)

which yields the output shown in figure 8.3. Then, to obtain the ANOVA table
for this regression
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anova(fitols)
This gives the result in figure 8.3. It’s that simple! One thing to note about

Figure 8.3: The anova(olsfit) command asks R to print the anova table for
the regression results stored in olsfit.

> anova(fitols) LE
Lnaly=sis of Variance Tahle

Response: v

DEf Sun S Mean S F walue Pri(=F)
x 1 25221 2522Z1 17.647 0.0001550 *+%
Residuals 38 54311 1429
Signif. codes: 0O '#¥#%! Q0,001 '*+*'° 0,01 '*' Q.05 ', 0.1 ' ' 1

>

how R reports analysis of variance. It reports the explained variation (25221)
in the top line and the unexplained variation in y (54311) below. It does not
report total variation. To obtain the total, you just have to add the explained
to the unexplained variation together (25221+454311=79532).

To do multiple regression in R, you have to put each of your independent
variables (other than the intercept) into a matrix. A matrix is a rectangular
array (which means it contains numbers arranged in rows and columns). You
can think of a matrix as the rows and columns of numbers that appear in a
spreadsheet program like MS Excel. Each row contains an observation on each
of your independent variables; each column contains all of the observations on
a particular variable. For instance suppose you have two variables, x1 and x2,
each having 5 observations. These can be combined horizontally into the matrix,
X. Computer programmers sometimes refer to this operation as horizontal
concatenation. Concatenation essentially means that you connect or link objects
in a series or chain; to concatenate horizontally means that you are binding one
or more columns of numbers together.

The function in R that binds columns of numbers together is cbind. So, to
horizontally concatenate x1 and z2 use the command

X <- cbind(x1,x2)

which takes

rl = r2 = , and yields X =

NI ARG B )
— W N
NI NI B )
— W N



CHAPTER 8. USING R WITH GRETL 35

Then the regression is estimated using

fitols <- 1m(y~X)

There is one more thing to mention about R that is very important and this
example illustrates it vividly. R is case sensitive. That means that two objects
x and X can mean two totally different things to R. Consequently, you have
to be careful when defining and calling objects in R to get to distinguish lower
from upper case letters.



Chapter 9

Reporting Results and
Functional Form

9.1 Coefflicient of Determination

One use of regression analysis is to “explain” variation in dependent variable
as a function of the independent variable. A summary statistic that is used for
this purpose is the coefficient of determination, also known as R2.

The R? can be computed manually from the analysis of variance table con-
structed in chapter 8. Figure 8.3 contains the analysis of variance table from
a simple linear regression. First, find the total variation in y by adding the
explained and unexplained variation together:

SSR+ SSE = 25221 + 54311 = 79532 (9.1)

Then, SSR/SST or 1-SSE/SST = 25221/79532 = .317

The other way is to use gretl’s regression output directly. This is shown in
figure 9.1.

9.2 Reporting Results

In case you think gretl is merely a toy, it includes a very capable utility that
enables it to produce professional looking output. LaTeX, usually pronounced

36
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Figure 9.1: In addition to some other summary statistics, Gretl computes the
unadjusted R? from the linear regression.

=

File Edit Tests Graphs Model data LaTed |

Model 1: OLS estimates using the 40 observations 1-40
Dependent wvariable: v

VARIALELE COEFFICIENT STDERROR T STAT ZProb(t > |T|
u)] const 40.7676 22.1387 1.841 0.073369 *
2 x 0.128289 0.0305393 4.201 0.000155 **+

Mean of dependent wariasble = 130.313
Standard deviation of dep. var. = 45.1586
Sum of sguared residuals = 54311.3
Standard error of residuals = 37.5054
Unadjusted R-sguared = 0.317118

Adjusted R-sguared = 0.2599148

Degrees of freedom = 38

Akaike information criterion (AIC) = 4056.059
Schwarz Bayesian criterion (BIC) = 409,437

Close |

“Lay-tech”, is typesetting program used by mathematicians and scientists to
produce professional looking technical documents. It is widely used by econo-
metricians to prepare manuscripts for wider distribution. In fact, this book is
produced in LaTeX.

Although LaTeX is free and can be used to produce very professional looking
documents with relative ease, it is not widely used by undergraduate students
because it is considered to be relatively hard to learn, especially for those unfa-
miliar with markup languages (like html, which is used to produce web pages).

In any event, gretl includes a facility for producing output that can be pasted
directly into LaTeX documents. For users of LaTeX, this makes generating
regression output in proper format a breeze. If you don’t already use LaTeX,
then this will not concern you. On the other hand, if you already use it, gretl
can be very handy in this respect.

In figure 9.1 you will notice that on the far right hand side of the menu bar
File Edit Tests Graphs Model data  LaTex

is a pull down menu for LaTeX.
From here, you can view, copy, or save the regression output in either tabular
form or in equation form. Examples of each are found below in tables 9.2 and
9.2.
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Table 9.1: Example of LaTeX output in tabular form

Model 1: OLS estimates using the 40 observations 1-40
Dependent variable: y

Variable Coefficient Std. Error t-statistic p-value
const 40.7676 22.1387 1.8415 0.0734
X 0.128289 0.0305393 4.2008 0.0002

Mean of dependent variable 130.313

S.D. of dependent variable 45.1586

Sum of squared residuals 54311.3

Standard error of residuals (&) 37.8054

Unadjusted R? 0.317118

Adjusted R? 0.299148

Degrees of freedom 38

Akaike information criterion 406.059

Schwarz Bayesian criterion 409.437

Table 9.2: Example of LaTeX output in equation form

v = 40.7676 + 0.128289 x
(1.841) (4.201)

T =40 R?*=02991 F(1,38) =17.647 & = 37.805
(t-statistics in parentheses)
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9.3 Functional Forms

Linear regression is considerably more flexible than its name implies. There
is no reason to believe that the relationship between any two variables of interest
is necessarily linear. In fact there are many relationships in economics that we
know are not linear. The relationship between an input to the production
process and output is governed by the law of diminishing returns in the short-
run which suggests a convex curve is more appropriate. Fortunately, a simple
transformation of the variables (z, y, or both) can still yield a model that is
linear in the parameters (but not necessarily in the variables).

Simple transformation of variables can yield regression functions that are
quite flexible. The important point to remember, the functional form that you
choose should be consistent with how the data are actually being generated. If
you choose an inappropriate form, then your estimated model may at best not
be very useful and at worst be downright misleading.

In gretl you are given a few very useful commands for transforming vari-
ables. From the Data>Add variables pull down menu you will find a number
of transformations that will automatically add the transformed variable and its

description to your data set.

Figure 9.2 shows the available selections from this pull down menu. Two of

Figure 9.2: The pull down menu for adding new variables to gretl

kirme trend

index variable %
logs of selected wariables

lags of selected variables

squares of selected variables

First differences af selecked wariables
log differences af selected wariables
perindic dummies

umit durnries

pane! dummies

randorm narrnal. ..
randorm unifarm, ..
seed generatar. .,

Define new wariable. .
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the options appear in black, the others are greyed out because they are only
available is you have time series observations. The available options can be used
to add the natural logarithm or the squared values of any highlighted variable to
your data set. If neither of these options suits you, then the last option Define
new variable can be selected. This dialog uses the genr command and the
large number of built in function to transform variables in various ways. Just
a few of the possibilities include square roots (sqrt), sine (sin), cosine (cos),
absolute value (abs), exponential (exp), minimum (min), maximum (max), and
SO on.

9.4 Testing for Normality

Your book discusses the Jarque-Bera test for normality which is computed
using the skewness and kurtosis of the least squares residuals. To compute the
Jarque-Bera statistic, you'll first need to estimate your model using least squares
and then save the residuals to the data set.

From the gretl console

ols y const x
genr uhatl = $uhat
summary uhatl

The first line is the regression. The next saves the least squares redsiduals,
identified as $uhat, into a variable I have called uhat1.! You could also use the
point and click method to add the residuals to the data set. This is accomplished
from the output window of your regression. Simply choose Model data>Add
to data set>residuals from the pull down menu. The last line give you
the summary statistics for the residuals. This yields the output in figure 9.3.
One thing to note, gretl reports excess kurtosis rather than kurtosis. The
excess kurtosis is measured relative to that of the normal distribution which
has kurtosis of three. Hence, your computation is

T E s K Liq)3
JB = @ (Skewness2 + (Excess 4urtoms) ) (9.2)
Which is 5
40 —0.12585
JB = 3 <O.39692 + ) =1.077 (9.3)

Gretl also includes a built in test for normality that has been proposed by
Doornik and Hansen (1994). Computationally, it is much more complex than

You can’t use uhat because that name is reserved by gretl.
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Figure 9.3: The summary statistics for the least squares residuals.

...................... [P

? summary uhatl

Summary Statistics, using the obhserwvations 1 - 40
for the wariable 'uhatl' (40 wvalid observations)

Hean I 0. ooooo

Hedian -5.96594

Minirman =-71.753

Max irmun 80,140

Gtandard deviation 37.315

C.V. 7.0026E4016

Skewness 0.39692

Ex. kurtosis -0.12585

the Jarque-Bera test. The Doornik-Hansen test also has a x? distribution if the
null hypothesis of normality is true. It can be produced from the gretl console
after running a regression using the command testuhat.
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