
Gretl User’s Guide

Gnu Regression, Econometrics and Time-series

Allin Cottrell
Department of Economics

Wake Forest university

Riccardo “Jack” Lucchetti
Dipartimento di Economia

Università di Ancona

November, 2005

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.1 or any later version published by the Free Software
Foundation (see http://www.gnu.org/licenses/fdl.html).

http://www.gnu.org/licenses/fdl.html

Contents

1 Introduction 1

1.1 Features at a glance . 1

1.2 Acknowledgements . 1

1.3 Installing the programs . 2

2 Getting started 4

2.1 Let’s run a regression . 4

2.2 Estimation output . 6

2.3 The main window menus . 7

2.4 The gretl toolbar . 10

3 Modes of working 12

3.1 Command scripts . 12

3.2 Saving script objects . 13

3.3 The gretl console . 14

3.4 The Session concept . 14

4 Data files 17

4.1 Native format . 17

4.2 Other data file formats . 17

4.3 Binary databases . 17

4.4 Creating a data file from scratch . 18

4.5 Missing data values . 20

4.6 Data file collections . 21

5 Special functions in genr 23

5.1 Introduction . 23

5.2 Time-series filters . 23

5.3 Resampling and bootstrapping . 24

5.4 Handling missing values . 25

5.5 Retrieving internal variables . 25

6 Panel data 27

6.1 Panel structure . 27

6.2 Dummy variables . 29

6.3 Lags and differences with panel data . 29

i

Contents ii

6.4 Pooled estimation . 29

6.5 Illustration: the Penn World Table . 30

7 Sub-sampling a dataset 31

7.1 Introduction . 31

7.2 Setting the sample . 31

7.3 Restricting the sample . 32

7.4 Random sampling . 33

7.5 The Sample menu items . 33

8 Graphs and plots 34

8.1 Gnuplot graphs . 34

8.2 Boxplots . 35

9 Nonlinear least squares 37

9.1 Introduction and examples . 37

9.2 Initializing the parameters . 37

9.3 NLS dialog window . 38

9.4 Analytical and numerical derivatives . 38

9.5 Controlling termination . 38

9.6 Details on the code . 39

9.7 Numerical accuracy . 39

10 Maximum likelihood estimation 41

10.1 Generic ML estimation with gretl . 41

10.2 Gamma estimation . 42

10.3 Stochastic frontier cost function . 43

10.4 GARCH models . 45

10.5 Analytical derivatives . 46

11 Model selection criteria 48

11.1 Introduction . 48

11.2 Information criteria . 48

12 Loop constructs 50

12.1 Introduction . 50

12.2 Loop control variants . 50

12.3 Progressive mode . 52

12.4 Loop examples . 52

13 User-defined functions 57

13.1 Introduction . 57

Contents iii

13.2 Defining a function . 57

13.3 Calling a function . 58

13.4 Scope of variables . 58

13.5 Return values . 58

13.6 Error checking . 59

14 Cointegration and Vector Error Correction Models 60

14.1 The Johansen cointegration test . 60

15 Troubleshooting gretl 62

15.1 Bug reports . 62

15.2 Auxiliary programs . 62

16 The command line interface 63

16.1 Gretl at the console . 63

16.2 Changes from Ramanathan’s ESL . 63

A Data file details 65

A.1 Basic native format . 65

A.2 Traditional ESL format . 65

A.3 Binary database details . 66

B Technical notes 68

C Numerical accuracy 69

D Advanced econometric analysis with free software 70

E Listing of URLs 71

Bibliography 72

Chapter 1

Introduction

1.1 Features at a glance

Gretl is an econometrics package, including a shared library, a command-line client program and a
graphical user interface.

User-friendly Gretl offers an intuitive user interface; it is very easy to get up and running with
econometric analysis. Thanks to its association with the econometrics textbooks by Ramu
Ramanathan, Jeffrey Wooldridge, and James Stock and Mark Watson the package offers many
practice data files and command scripts. These are well annotated and accessible.

Flexible You can choose your preferred point on the spectrum from interactive point-and-click to
batch processing, and can easily combine these approaches.

Cross-platform Gretl’s “home” platform is Linux but it is also available for MS Windows and Mac
OS X, and should work on any unix-like system that has the appropriate basic libraries (see
Appendix B).

Open source The full source code for gretl is available to anyone who wants to critique it, patch it,
or extend it.

Reasonably sophisticated Gretl offers a full range of least-squares based estimators, including
two-stage least squares and nonlinear least squares. It also offers several specific maximum-
likelihood estimators (e.g. logit, probit, tobit) and, as of version 1.5.0, general likelihood-
maximization functionality. The program supports estimation of systems of simultaneous
equations, GARCH, ARMA, vector autoregressions and vector error correction models.

Accurate Gretl has been thoroughly tested on the NIST reference datasets. See Appendix C.

Internet ready Gretl can access and fetch databases from a server at Wake Forest University. The
MS Windows version comes with an updater program which will detect when a new version is
available and offer the option of auto-updating.

International Gretl will produce its output in English, French, Italian, Spanish, Polish or German,
depending on your computer’s native language setting.

1.2 Acknowledgements

The gretl code base originally derived from the program ESL (“Econometrics Software Library”),
written by Professor Ramu Ramanathan of the University of California, San Diego. We are much in
debt to Professor Ramanathan for making this code available under the GNU General Public Licence
and for helping to steer gretl’s development.

We are also grateful to the authors of several econometrics textbooks for permission to package for
gretl various datasets associated with their texts. This list currently includes William Greene, au-
thor of Econometric Analysis; Jeffrey Wooldridge (Introductory Econometrics: A Modern Approach);
James Stock and Mark Watson (Introduction to Econometrics); Damodar Gujarati (Basic Economet-
rics); and Russell Davidson and James MacKinnon (Econometric Theory and Methods).

1

Chapter 1. Introduction 2

GARCH estimation in gretl is based on code deposited in the archive of the Journal of Applied
Econometrics by Professors Fiorentini, Calzolari and Panattoni, and the code to generate p-values
for Dickey–Fuller tests is due to James MacKinnon. In each case we are grateful to the authors for
permission to use their work.

With regard to the internationalization of gretl, thanks go to Ignacio Díaz-Emparanza, Michel Ro-
bitaille, Cristian Rigamonti, Tadeusz and Pawel Kufel, and Markus Hahn, who prepared the Spanish,
French, Italian, Polish and German translations respectively.

Gretl has benefitted greatly from the work of numerous developers of free, open-source software:
for specifics please see Appendix B. Our thanks are due to Richard Stallman of the Free Software
Foundation, for his support of free software in general and for agreeing to “adopt” gretl as a GNU
program in particular.

Many users of gretl have submitted useful suggestions and bug reports. In this connection particu-
lar thanks are due to Ignacio Díaz-Emparanza, Tadeusz Kufel, Pawel Kufel, Alan Isaac, Cri Rigamonti
and Dirk Eddelbuettel, who maintains the gretl package for Debian GNU/Linux.

1.3 Installing the programs

Linux

On the Linux1 platform you have the choice of compiling the gretl code yourself or making use of
a pre-built package. Ready-to-run packages are available in rpm format (suitable for Red Hat Linux
and related systems) and also deb format (Debian GNU/Linux). If you prefer to compile your own
(or are using a unix system for which pre-built packages are not available) here is what to do.

1. Download the latest gretl source package from gretl.sourceforge.net.

2. Unzip and untar the package. On a system with the GNU utilities available, the command
would be tar xvfz gretl-N.tar.gz (replace N with the specific version number of the file
you downloaded at step 1).

3. Change directory to the gretl source directory created at step 2 (e.g. gretl-1.1.5).

4. The basic routine is then

./configure
make
make check
make install

However, you should probably read the INSTALL file first, and/or do

./configure --help

first to see what options are available. One option you way wish to tweak is --prefix. By
default the installation goes under /usr/local but you can change this. For example

./configure --prefix=/usr

will put everything under the /usr tree. In the event that a required library is not found on
your system, so that the configure process fails, please see Appendix B.

Gretl offers support for the gnome desktop. To take advantage of this you should compile the
program yourself (as described above). If you want to suppress the gnome-specific features you
can pass the option --without-gnome to configure.

1In this manual we use “Linux” as shorthand to refer to the GNU/Linux operating system. What is said herein about
Linux mostly applies to other unix-type systems too, though some local modifications may be needed.

http://gretl.sourceforge.net/

Chapter 1. Introduction 3

MS Windows

The MS Windows version comes as a self-extracting executable. Installation is just a matter of
downloading gretl_install.exe and running this program. You will be prompted for a location
to install the package (the default is c:\userdata\gretl).

Updating

If your computer is connected to the Internet, then on start-up gretl can query its home website
at Wake Forest University to see if any program updates are available; if so, a window will open
up informing you of that fact. If you want to activate this feature, check the box marked “Tell me
about gretl updates” under gretl’s “File, Preferences, General” menu.

The MS Windows version of the program goes a step further: it tells you that you can update gretl
automatically if you wish. To do this, follow the instructions in the popup window: close gretl
then run the program titled “gretl updater” (you should find this along with the main gretl program
item, under the Programs heading in the Windows Start menu). Once the updater has completed
its work you may restart gretl.

Chapter 2

Getting started

2.1 Let’s run a regression

This introduction is mostly angled towards the graphical client program; please see Chapter 16
below and the Gretl Command Reference for details on the command-line program, gretlcli.

You can supply the name of a data file to open as an argument to gretl, but for the moment let’s
not do that: just fire up the program.1 You should see a main window (which will hold information
on the data set but which is at first blank) and various menus, some of them disabled at first.

What can you do at this point? You can browse the supplied data files (or databases), open a data
file, create a new data file, read the help items, or open a command script. For now let’s browse the
supplied data files. Under the File menu choose “Open data, sample file, Ramanathan. . . ”. A second
window should open, presenting a list of data files supplied with the package (see Figure 2.1).
The numbering of the files corresponds to the chapter organization of Ramanathan (2002), which
contains discussion of the analysis of these data. The data will be useful for practice purposes even
without the text.

Figure 2.1: Practice data files window

If you select a row in this window and click on “Info” this opens a window showing information on
the data set in question (for example, on the sources and definitions of the variables). If you find
a file that is of interest, you may open it by clicking on “Open”, or just double-clicking on the file
name. For the moment let’s open data3-6.

☞ In gretl windows containing lists, double-clicking on a line launches a default action for the associated list
entry: e.g. displaying the values of a data series, opening a file.

This file contains data pertaining to a classic econometric “chestnut”, the consumption function.

1For convenience I will refer to the graphical client program simply as gretl in this manual. Note, however, that the
specific name of the program differs according to the computer platform. On Linux it is called gretl_x11 while on MS
Windows it is gretlw32.exe. On Linux systems a wrapper script named gretl is also installed — see also the Gretl
Command Reference.

4

Chapter 2. Getting started 5

The data window should now display the name of the current data file, the overall data range and
sample range, and the names of the variables along with brief descriptive tags — see Figure 2.2.

Figure 2.2: Main window, with a practice data file open

OK, what can we do now? Hopefully the various menu options should be fairly self explanatory. For
now we’ll dip into the Model menu; a brief tour of all the main window menus is given in Section 2.3
below.

gretl’s Model menu offers numerous various econometric estimation routines. The simplest and
most standard is Ordinary Least Squares (OLS). Selecting OLS pops up a dialog box calling for a
model specification — see Figure 2.3.

Figure 2.3: Model specification dialog

To select the dependent variable, highlight the variable you want in the list on the left and click the
“Choose” button that points to the Dependent variable slot. If you check the “Set as default” box
this variable will be pre-selected as dependent when you next open the model dialog box. Shortcut:
double-clicking on a variable on the left selects it as dependent and also sets it as the default. To
select independent variables, highlight them on the left and click the “Add” button (or click the
right mouse button over the highlighted variable). To select several variable in the list box, drag
the mouse over them; to select several non-contiguous variables, hold down the Ctrl key and click
on the variables you want. To run a regression with consumption as the dependent variable and
income as independent, click Ct into the Dependent slot and add Yt to the Independent variables

Chapter 2. Getting started 6

list.

2.2 Estimation output

Once you’ve specified a model, a window displaying the regression output will appear. The output
is reasonably comprehensive and in a standard format (Figure 2.4).

Figure 2.4: Model output window

The output window contains menus that allow you to inspect or graph the residuals and fitted
values, and to run various diagnostic tests on the model.

For most models there is also an option to reprint the regression output in LATEX format. You can
print the results in a tabular format (similar to what’s in the output window, but properly typeset)
or as an equation, across the page. For each of these options you can choose to preview the typeset
product, or save the output to file for incorporation in a LATEX document. Previewing requires that
you have a functioning TEX system on your computer. You can control the appearance of gretl’s
LATEX output using a file named gretlpre.tex, which should be placed in your gretl user directory
(see the Gretl Command Reference). If a file of this name is found, its contents will be used as the
LATEX “preamble”. The default value of the preamble is as follows:

\documentclass[11pt]{article}
\usepackage[latin1]{inputenc}
\usepackage{amsmath}
\usepackage{dcolumn,longtable}
\begin{document}
\thispagestyle{empty}

Note that the amsmath and dcolumn packages are required.

To import gretl output into a word processor, you may copy and paste from an output window,
using its Edit menu (or Copy button, in some contexts) to the target program. Many (not all) gretl
windows offer the option of copying in RTF (Microsoft’s “Rich Text Format”) or as LATEX. If you are
pasting into a word processor, RTF may be a good option because the tabular formatting of the
output is preserved.2 Alternatively, you can save the output to a (plain text) file then import the

2Note that when you copy as RTF under MS Windows, Windows will only allow you to paste the material into appli-
cations that “understand” RTF. Thus you will be able to paste into MS Word, but not into notepad. Note also that there

Chapter 2. Getting started 7

file into the target program. When you finish a gretl session you are given the option of saving all
the output from the session to a single file.

Note that on the gnome desktop and under MS Windows, the File menu includes a command to
send the output directly to a printer.

☞ When pasting or importing plain text gretl output into a word processor, select a monospaced or typewriter-
style font (e.g. Courier) to preserve the output’s tabular formatting. Select a small font (10-point Courier
should do) to prevent the output lines from being broken in the wrong place.

2.3 The main window menus

Reading left to right along the main window’s menu bar, we find the File, Utilities, Session, Data,
Sample, Variable, Model and Help menus.

• File menu

– Open data: Open a native gretl data file or import from other formats. See Chapter 4.

– Append data: Add data to the current working data set, from a gretl data file, a comma-
separated values file or a spreadsheet file.

– Save data: Save the currently open native gretl data file.

– Save data as: Write out the current data set in native format, with the option of using
gzip data compression. See Chapter 4.

– Export data: Write out the current data set in Comma Separated Values (CSV) format, or
the formats of GNU R or GNU Octave. See Chapter 4 and also Appendix D.

– Clear data set: Clear the current data set out of memory. Generally you don’t have to do
this (since opening a new data file automatically clears the old one) but sometimes it’s
useful.

– Browse databases: See Section 4.3.

– Create data set: Initialize the built-in spreadsheet for entering data manually. See Sec-
tion 4.4.

– View command log: Open a window containing a record of the commands executed so
far.

– Open command file: Open a file of gretl commands, either one you have created yourself
or one of the practice files supplied with the package. If you want to create a command
file from scratch use the next item, New command file.

– Preferences: Set the paths to various files gretl needs to access. Choose the font in which
gretl displays text output. Select or unselect “expert mode”. (If this mode is selected
various warning messages are suppressed.) Activate or suppress gretl’s messaging about
the availability of program updates. Configure or turn on/off the main-window toolbar.
See the Gretl Command Referencefor further details.

– Exit: Quit the program. If expert mode is not selected you’ll be prompted to save any
unsaved work.

• Utilities menu

– Statistical tables: Look up critical values for commonly used distributions (normal or
Gaussian, t, chi-square, F and Durbin–Watson).

appears to be a bug in some versions of Windows, whereby the paste will not work properly unless the “target” application
(e.g. MS Word) is already running prior to copying the material in question.

Chapter 2. Getting started 8

– p-value finder: Open a window which enables you to look up p-values from the Gaussian,
t, chi-square, F or gamma distributions. See also the pvalue command in the Gretl
Command Reference.

– Test statistic calculator: Calculate test statistics and p-values for a range of common
hypothesis tests (population mean, variance and proportion; difference of means, vari-
ances and proportions). The relevant sample statistics must be already available for
entry into the dialog box. For some simple tests that take as input data series rather than
pre-computed sample statistics, see “Difference of means” and “Difference of variances”
under the Data menu.

– Gretl console: Open a “console” window into which you can type commands as you would
using the command-line program, gretlcli (as opposed to using point-and-click).

– Start Gnu R: Start R (if it is installed on your system), and load a copy of the data set
currently open in gretl. See Appendix D.

– NIST test suite: Check the numerical accuracy of gretl against the reference results for
linear regression made available by the (US) National Institute of Standards and Technol-
ogy.

• Session menu

– Icon view: Open a window showing the current gretl session as a set of icons. For details
see Section 3.4.

– Open: Open a previously saved session file.

– Save: Save the current session to file.

– Save as: Save the current session to file under a chosen name.

• Data menu

– Display values: Pops up a window with a simple (not editable) printout of the values of
the variables (either all of them or a selected subset).

– Edit values: Pops up a spreadsheet window where you can make changes, add new vari-
ables, and extend the number of observations.

– Sort variables: Rearrange the listing of variables in the main window, either by ID number
or alphabetically by name.

– Graph specified vars: Gives a choice between a time series plot, a regular X–Y scatter
plot, an X–Y plot using impulses (vertical bars), an X–Y plot “with factor separation” (i.e.
with the points colored differently depending to the value of a given dummy variable),
boxplots, and a 3-D graph. Serves up a dialog box where you specify the variables to
graph. See Chapter 8 for details.

– Multiple scatterplots: Show a collection of (at most six) pairwise plots, with either a given
variable on the y axis plotted against several different variables on the x axis, or several
y variables plotted against a given x. May be useful for exploratory data analysis.

– Read info, Edit info: “Read info” just displays the summary information for the current
data file; “Edit info” allows you to make changes to it (if you have permission to do so).

– Print description: Opens a window containing a full account of the current dataset, in-
cluding the summary information and any specific information on each of the variables.

– Summary statistics: Shows a fairly full set of descriptive statistics for all variables in the
data set, or for selected variables.

– Correlation matrix: Shows the pairwise correlation coefficients for all variables in the
data set, or selected variables

– Principal components: Active only if two or more variables are selected; produces a Prin-
cipal Components Analysis of the selected variables.

Chapter 2. Getting started 9

– Mahalonobis distances: Active only if two or more variables are selected; computes the
Mahalonobis distance of each observation from the centroid of the selected set of vari-
ables.

– Difference of means: Calculates the t statistic for the null hypothesis that the population
means are equal for two selected variables and shows its p-value.

– Difference of variances: Calculates the F statistic for the null hypothesis that the popu-
lation variances are equal for two selected variables and shows its p-value.

– Add variables: Gives a sub-menu of standard transformations of variables (logs, lags,
squares, etc.) that you may wish to add to the data set. Also gives the option of adding
random variables, and (for time-series data) adding seasonal dummy variables (e.g. quar-
terly dummy variables for quarterly data). Includes an item for seeding the program’s
pseudo-random number generator.

– Add observations: Gives a dialog box in which you can choose a number of observations
to add at the end of the current dataset; for use with forecasting.

– Remove extra observations: Active only if extra observations have been added automati-
cally in the process of forecasting; deletes these extra observations.

– Refresh window: Sometimes gretl commands generate new variables. The “refresh” item
ensures that the listing of variables visible in the main data window is in sync with the
program’s internal state.

• Sample menu

– Set range: Select a different starting and/or ending point for the current sample, within
the range of data available.

– Restore full range: self-explanatory.

– Dataset structure: invokes a series of dialog boxes which allow you to change the struc-
tural interpretation of the current dataset. For example, if data were read in as a cross
section you can get the program to interpret them as time series or as a panel. See also
Chapter 6.

– Compact data: For time-series data of higher than annual frequency, gives you the option
of compacting the data to a lower frequency, using one of four compaction methods
(average, sum, start of period or end of period).

– Define, based on dummy: Given a dummy (indicator) variable with values 0 or 1, this
drops from the current sample all observations for which the dummy variable has value
0.

– Restrict, based on criterion: Similar to the item above, except that you don’t need a pre-
defined variable: you supply a Boolean expression (e.g. sqft > 1400) and the sample is
restricted to observations satisfying that condition. See the entry for genr in the Gretl
Command Referencefor details on the Boolean operators that can be used.

– Drop all obs with missing values: Drop from the current sample all observations for
which at least one variable has a missing value (see Section 4.5).

– Count missing values: Give a report on observations where data values are missing. May
be useful in examining a panel data set, where it’s quite common to encounter missing
values.

– Set missing value code: Set a numerical value that will be interpreted as “missing” or “not
available”.

– Add case markers: Prompts for the name of a text file containing “case markers” (short
strings identifying the individual observations) and adds this information to the data set.
See Chapter 4.

– Remove case markers: Active only if the dataset has case markers indentifying the ob-
servations; removes these case markers.

Chapter 2. Getting started 10

– Restructure panel: Allows the conversion of a panel data set in stacked cross-section
form into stacked time series or vice versa. (Unlike the Dataset structure menu item
above, this one actually changes the organization of the data.)

– Transpose data: Turn each observation into a variable and vice versa (or in other words,
each row of the data matrix becomes a column in the modified data matrix); can be useful
with imported data that have been read in “sideways”.

• Variable menu Most items under here operate on a single variable at a time. The “active”
variable is set by highlighting it (clicking on its row) in the main data window. Most options
will be self-explanatory. Note that you can rename a variable and can edit its descriptive label
under “Edit attributes”. You can also “Define a new variable” via a formula (e.g. involving
some function of one or more existing variables). For the syntax of such formulae, look at the
online help for “Generate variable syntax” or see the genr command in the Gretl Command
Reference. One simple example:

foo = x1 * x2

will create a new variable foo as the product of the existing variables x1 and x2. In these
formulae, variables must be referenced by name, not number.

• Model menu For details on the various estimators offered under this menu please consult
the Gretl Command Reference and/or the online help under “Help, Estimation”. Also see
Chapter 9 regarding the estimation of nonlinear models.

• Help menu Please use this as needed! It gives details on the syntax required in various dialog
entries.

2.4 The gretl toolbar

At the bottom left of the main window sits the toolbar.

The icons have the following functions, reading from left to right:

1. Launch a calculator program. A convenience function in case you want quick access to a cal-
culator when you’re working in gretl. The default program is calc.exe under MS Windows, or
xcalc under the X window system. You can change the program under the “File, Preferences,
General” menu, “Programs” tab.

2. Start a new script. Opens an editor window in which you can type a series of commands to be
sent to the program as a batch.

3. Open the gretl console. A shortcut to the “Gretl console” menu item (Section 2.3 above).

4. Open the gretl session window.

5. Open the gretl website in your web browser. This will work only if you are connected to the
Internet and have a properly configured browser.

6. Open the current version of this manual, in PDF format. As with the previous item, this
requires an Internet connection; it also requires that your browser knows how to handle PDF
files.

7. Open the help item for script commands syntax (i.e. a listing with details of all available
commands).

8. Open the dialog box for defining a graph.

Chapter 2. Getting started 11

9. Open the dialog box for estimating a model using ordinary least squares.

10. Open a window listing the datasets associated with Ramanathan’s Introductory Econometrics
(and also the datasets from the various other econometrics texts that are supported by gretl,
if they are installed).

If you don’t care to have the toolbar displayed, you can turn it off under the “File, Preferences,
General” menu. Go o the Toolbar tab and uncheck the “show gretl toolbar” box.

Chapter 3

Modes of working

3.1 Command scripts

As you execute commands in gretl, using the GUI and filling in dialog entries, those commands are
recorded in the form of a “script” or batch file. Such scripts can be edited and re-run, using either
gretl or the command-line client, gretlcli.

To view the current state of the script at any point in a gretl session, choose “View command log”
under the File menu. This log file is called session.inp and it is overwritten whenever you start a
new session. To preserve it, save the script under a different name. Script files will be found most
easily, using the GUI file selector, if you name them with the extension “.inp”.

To open a script you have written independently, use the “File, Open command file” menu item;
to create a script from scratch use the “File, New command file” item or the “new script” toolbar
button. In either case a script window will open (see Figure 3.1).

Figure 3.1: Script window, editing a command file

The toolbar at the top of the script window offers the following functions (left to right): (1) Save the
file; (2) Save the file under a specified name; (3) Print the file (under Windows or the gnome desktop
only); (4) Execute the commands in the file; (5) Copy selected text; (6) Paste the selected text; (7)
Find and replace text; (8) Undo the last Paste or Replace action; (9) Help (if you place the cursor in
a command word and press the question mark you will get help on that command); (10) Close the
window.

When you click the Execute icon or choose the “File, Run” menu item all output is directed to a
single window, where it can be edited, saved or copied to the clipboard. To learn more about the
possibilities of scripting, take a look at the gretl Help item “Script commands syntax,” or start up
the command-line program gretlcli and consult its help, or consult the Gretl Command Reference.

In addition, the gretl package includes over 70 “practice” scripts. Most of these relate to Ra-

12

Chapter 3. Modes of working 13

manathan (2002), but they may also be used as a free-standing introduction to scripting in gretl
and to various points of econometric theory. You can explore the practice files under “File, Open
command file, practice file” There you will find a listing of the files along with a brief description
of the points they illustrate and the data they employ. Open any file and run it to see the output.
Note that long commands in a script can be broken over two or more lines, using backslash as a
continuation character.

You can, if you wish, use the GUI controls and the scripting approach in tandem, exploiting each
method where it offers greater convenience. Here are two suggestions.

• Open a data file in the GUI. Explore the data — generate graphs, run regressions, perform
tests. Then open the Command log, edit out any redundant commands, and save it under
a specific name. Run the script to generate a single file containing a concise record of your
work.

• Start by establishing a new script file. Type in any commands that may be required to set
up transformations of the data (see the genr command in the Gretl Command Reference).
Typically this sort of thing can be accomplished more efficiently via commands assembled
with forethought rather than point-and-click. Then save and run the script: the GUI data
window will be updated accordingly. Now you can carry out further exploration of the data
via the GUI. To revisit the data at a later point, open and rerun the “preparatory” script first.

3.2 Saving script objects

When you estimate a model using point-and-click, the model results are displayed in a separate
window, offering menus which let you perform tests, draw graphs, save data from the model, and
so on. Ordinarily, when you estimate a model using a script you just get a non-interactive printout
of the results. You can, however, arrange for models estimated in a script to be “captured”, so that
you can examine them interactively when the script is finished. Here is an example of the syntax
for achieving this effect:

Model1 <- ols Ct 0 Yt

That is, you type a name for the model to be saved under, then a back-pointing “assignment arrow”,
then the model command. You may use names that have embedded spaces if you like, but such
names must always be wrapped in double quotes:

"Model 1" <- ols Ct 0 Yt

Models saved in this way will appear as icons in the gretl session window (see Section 3.4) after
the script is executed. In addition, you can arrange to have a named model displayed (in its own
window) automatically as follows:

Model1.show

Again, if the name contains spaces it must be quoted:

"Model 1".show

The same facility can be used for graphs. For example the following will create a plot of Ct against
Yt, save it under the name “CrossPlot” (it will appear under this name in the session icon window),
and have it displayed:

CrossPlot <- gnuplot Ct Yt
CrossPlot.show

Chapter 3. Modes of working 14

You can also save the output from selected commands as named pieces of text (again, these will
appear in the session icon window, from where you can open them later). For example this com-
mand sends the output from an augmented Dickey–Fuller test to a “text object” named ADF1 and
displays it in a window:

ADF1 <- adf 2 x1
ADF1.show

Objects saved in this way (whether models, graphs or pieces of text output) can be destroyed using
the command .free appended to the name of the object, as in ADF1.free.

3.3 The gretl console

A further option is available for your computing convenience. Under gretl’s Utilities menu you will
find the item “Gretl console” (there is also an “open gretl console” button on the toolbar in the
main window). This opens up a window in which you can type commands and execute them one
by one (by pressing the Enter key) interactively. This is essentially the same as gretlcli’s mode of
operation, except that the GUI is updated based on commands executed from the console, enabling
you to work back and forth as you wish.

In the console, you have “command history”; that is, you can use the up and down arrow keys to
navigate the list of command you have entered to date. You can retrieve, edit and then re-enter a
previous command.

In console mode, you can create, display and free objects (models, graphs or text) aa described
above for script mode.

3.4 The Session concept

gretl offers the idea of a “session” as a way of keeping track of your work and revisiting it later.
The basic idea is to provide an iconic space containing various objects pertaining to your current
working session (see Figure 3.2). You can add objects (represented by icons) to this space as you
go along. If you save the session, these added objects should be available again if you re-open the
session later.

Figure 3.2: Icon view: one model and one graph have been added to the default icons

If you start gretl and open a data set, then select “Icon view” from the Session menu, you should
see the basic default set of icons: these give you quick access to the command script (“Session”),
information on the data set (if any), correlation matrix (“Correlations”) and descriptive summary
statistics (“Summary”). All of these are activated by double-clicking the relevant icon. The “Data
set” icon is a little more complex: double-clicking opens up the data in the built-in spreadsheet, but
you can also right-click on the icon for a menu of other actions.

Chapter 3. Modes of working 15

To add a model to the session view, first estimate it using the Model menu. Then pull down the
File menu in the model window and select “Save to session as icon. . . ” or “Save as icon and close”.
Simply hitting the S key over the model window is a shortcut to the latter action.

To add a graph, first create it (under the Data menu, “Graph specified vars”, or via one of gretl’s
other graph-generating commands). Click on the graph window to bring up the graph menu, and
select “Save to session as icon”.

Once a model or graph is added its icon should appear in the Icon View window. Double-clicking
on the icon redisplays the object, while right-clicking brings up a menu which lets you display or
delete the object. This popup menu also gives you the option of editing graphs.

The model table

In econometric research it is common to estimate several models with a common dependent vari-
able — the models differing in respect of which independent variables are included, or perhaps in
respect of the estimator used. In this situation it is convenient to present the regression results
in the form of a table, where each column contains the results (coefficient estimates and standard
errors) for a given model, and each row contains the estimates for a given variable across the
models.

In the Icon View window gretl provides a means of constructing such a table (and copying it in plain
text, LATEX or Rich Text Format). Here is how to do it:1

1. Estimate a model which you wish to include in the table, and in the model display window,
under the File menu, select “Save to session as icon” or “Save as icon and close”.

2. Repeat step 1 for the other models to be included in the table (up to a total of six models).

3. When you are done estimating the models, open the icon view of your gretl session, by select-
ing “Icon view” under the Session menu in the main gretl window, or by clicking the “session
icon view” icon on the gretl toolbar.

4. In session icon view, there is an icon labeled “Model table”. Decide which model you wish to
appear in the left-most column of the model table and add it to the table, either by dragging
its icon onto the Model table icon, or by right-clicking on the model icon and selecting “Add
to model table” from the pop-up menu.

5. Repeat step 4 for the other models you wish to include in the table. The second model selected
will appear in the second column from the left, and so on.

6. When you are finished composing the model table, display it by double-clicking on its icon.
Under the Edit menu in the window which appears, you have the option of copying the table
to the clipboard in various formats.

7. If the ordering of the models in the table is not what you wanted, right-click on the model
table icon and select “Clear table”. Then go back to step 4 above and try again.

A simple instance of gretl’s model table is shown in Figure 3.3.

The graph page

The “graph page” icon in the session window offers a means of putting together several graphs
for printing on a single page. This facility will work only if you have the LATEX typsetting system
installed, and are able to generate and view PostScript output.2

1The model table can also be built non-interactively, in script mode. For details on how to do this, see the entry for
modeltab in the Gretl Command Reference.

2Specifically, you must have dvips and ghostscript installed, along with a viewer such as gv, ggv or kghostview. The
default viewer for systems other than MS Windows is gv.

Chapter 3. Modes of working 16

Figure 3.3: Example of model table

In the Icon View window, you can drag up to eight graphs onto the graph page icon. When you
double-click on the icon (or right-click and select “Display”), a page containing the selected graphs
(in EPS format) will be composed and opened in your postscript viewer. From there you should be
able to print the page.

To clear the graph page, right-click on its icon and select “Clear”.

On systems other than MS Windows, you may have to adjust the setting for the program used to
view postscript. Find that under the “Programs” tab in the Preferences dialog box (under the “File”
menu in the main window). On Windows, you may need to adjust your file associations so that the
appropriate viewer is called for the “Open” action on files with the .ps extension.

Saving and re-opening sessions

If you create models or graphs that you think you may wish to re-examine later, then before quitting
gretl select “Save as. . . ” from the Session menu and give a name under which to save the session.
To re-open the session later, either

• Start gretl then re-open the session file by going to the “Open” item under the Session menu,
or

• From the command line, type gretl -r sessionfile, where sessionfile is the name under which
the session was saved.

Chapter 4

Data files

4.1 Native format

gretl has its own format for data files. Most users will probably not want to read or write such files
outside of gretl itself, but occasionally this may be useful and full details on the file formats are
given in Appendix A.

4.2 Other data file formats

gretl will read various other data formats.

• Plain text (ASCII) files. These can be brought in using gretl’s “File, Open Data, Import ASCII. . . ”
menu item, or the import script command. For details on what gretl expects of such files, see
Section 4.4.

• Comma-Separated Values (CSV) files. These can be imported using gretl’s “File, Open Data,
Import CSV. . . ” menu item, or the import script command. See also Section 4.4.

• Worksheets in the format of either MS Excel or Gnumeric. These are also brought in using
gretl’s “File, Open Data, Import” menu. The requirements for such files are given in Sec-
tion 4.4.

• Stata data files (.dta).

• Eviews workfiles (.wf1).1

When you import data from the ASCII or CSV formats, gretl opens a “diagnostic” window, report-
ing on its progress in reading the data. If you encounter a problem with ill-formatted data, the
messages in this window should give you a handle on fixing the problem.

For the convenience of anyone wanting to carry out more complex data analysis, gretl has a facility
for writing out data in the native formats of GNU R and GNU Octave (see Appendix D). In the
GUI client this option is found under the “File” menu; in the command-line client use the store
command with the flag -r (R) or -m (Octave).

4.3 Binary databases

For working with large amounts of data gretl is supplied with a database-handling routine. A
database, as opposed to a data file, is not read directly into the program’s workspace. A database
can contain series of mixed frequencies and sample ranges. You open the database and select
series to import into the working dataset. You can then save those series in a native format data
file if you wish. Databases can be accessed via gretl’s menu item “File, Browse databases”.

For details on the format of gretl databases, see Appendix A.

1This is somewhat experimental. See http://www.ecn.wfu.edu/eviews_format/.

17

http://www.ecn.wfu.edu/eviews_format/

Chapter 4. Data files 18

Online access to databases

As of version 0.40, gretl is able to access databases via the internet. Several databases are available
from Wake Forest University. Your computer must be connected to the internet for this option to
work. Please see the item on “Online databases” under gretl’s Help menu.

RATS 4 databases

Thanks to Thomas Doan of Estima, who provided me with the specification of the database format
used by RATS 4 (Regression Analysis of Time Series), gretl can also handle such databases. Well,
actually, a subset of same: I have only worked on time-series databases containing monthly and
quarterly series. My university has the RATS G7 database containing data for the seven largest
OECD economies and gretl will read that OK.

☞ Visit the gretl data page for details and updates on available data.

4.4 Creating a data file from scratch

There are five ways to do this:

1. Find, or create using a text editor, a plain text data file and open it with gretl’s “Import ASCII”
option.

2. Use your favorite spreadsheet to establish the data file, save it in Comma Separated Values
format if necessary (this should not be necessary if the spreadsheet program is MS Excel or
Gnumeric), then use one of gretl’s “Import” options (CSV, Excel or Gnumeric, as the case may
be).

3. Use gretl’s built-in spreadsheet.

4. Select data series from a suitable database.

5. Use your favorite text editor or other software tools to a create data file in gretl format inde-
pendently.

Here are a few comments and details on these methods.

Common points on imported data

Options (1) and (2) involve using gretl’s “import” mechanism. For gretl to read such data success-
fully, certain general conditions must be satisfied:

• The first row must contain valid variable names. A valid variable name is of 8 characters
maximum; starts with a letter; and contains nothing but letters, numbers and the underscore
character, _. (Longer variable names will be truncated to 8 characters.) Qualifications to the
above: First, in the case of an ASCII or CSV import, if the file contains no row with variable
names the program will automatically add names, v1, v2 and so on. Second, by “the first row”
is meant the first relevant row. In the case of ASCII and CSV imports, blank rows and rows
beginning with a hash mark, #, are ignored. In the case of Excel and Gnumeric imports, you
are presented with a dialog box where you can select an offset into the spreadsheet, so that
gretl will ignore a specified number of rows and/or columns.

• Data values: these should constitute a rectangular block, with one variable per column (and
one observation per row). The number of variables (data columns) must match the number
of variable names given. See also Section 4.5. Numeric data are expected, but in the case of
importing from ASCII/CSV, the program offers limited handling of character (string) data: if
a given column contains character data only, consecutive numeric codes are substituted for

http://gretl.sourceforge.net/gretl_data.html

Chapter 4. Data files 19

the strings, and once the import is complete a table is printed showing the correspondence
between the strings and the codes.

• Dates (or observation labels): Optionally, the first column may contain strings such as dates,
or labels for cross-sectional observations. Such strings have a maximum of 8 characters (as
with variable names, longer strings will be truncated). A column of this sort should be headed
with the string obs or date, or the first row entry may be left blank.

For dates to be recognized as such, the date strings must adhere to one or other of a set of
specific formats, as follows. For annual data: 4-digit years. For quarterly data: a 4-digit year,
followed by a separator (either a period, a colon, or the letter Q), followed by a 1-digit quarter.
Examples: 1997.1, 2002:3, 1947Q1. For monthly data: a 4-digit year, followed by a period or
a colon, followed by a two-digit month. Examples: 1997.01, 2002:10.

CSV files can use comma, space or tab as the column separator. When you use the “Import CSV”
menu item you are prompted to specify the separator. In the case of “Import ASCII” the program
attempts to auto-detect the separator that was used.

If you use a spreadsheet to prepare your data you are able to carry out various transformations of
the “raw” data with ease (adding things up, taking percentages or whatever): note, however, that
you can also do this sort of thing easily — perhaps more easily — within gretl, by using the tools
under the “Data, Add variables” menu and/or “Variable, define new variable”.

Appending imported data

You may wish to establish a gretl dataset piece by piece, by incremental importation of data from
other sources. This is supported via the “File, Append data” menu items: gretl will check the new
data for conformability with the existing dataset and, if everything seems OK, will merge the data.
You can add new variables in this way, provided the data frequency matches that of the existing
dataset. Or you can append new observations for data series that are already present; in this case
the variable names must match up correctly. Note that by default (that is, if you choose “Open
data” rather than “Append data”), opening a new data file closes the current one.

Using the built-in spreadsheet

Under gretl’s “File, Create data set” menu you can choose the sort of dataset you want to establish
(e.g. quarterly time series, cross-sectional). You will then be prompted for starting and ending dates
(or observation numbers) and the name of the first variable to add to the dataset. After supplying
this information you will be faced with a simple spreadsheet into which you can type data values. In
the spreadsheet window, clicking the right mouse button will invoke a popup menu which enables
you to add a new variable (column), to add an observation (append a row at the foot of the sheet),
or to insert an observation at the selected point (move the data down and insert a blank row.)

Once you have entered data into the spreadsheet you import these into gretl’s workspace using the
spreadsheet’s “Apply changes” button.

Please note that gretl’s spreadsheet is quite basic and has no support for functions or formulas.
Data transformations are done via the “Data” or “Variable” menus in the main gretl window.

Selecting from a database

Another alternative is to establish your dataset by selecting variables from a database. gretl comes
with a database of US macroeconomic time series and, as mentioned above, the program will reads
RATS 4 databases.

Begin with gretl’s “File, Browse databases” menu item. This has three forks: “gretl native”, “RATS
4” and “on database server”. You should be able to find the file fedstl.bin in the file selector that
opens if you choose the “gretl native” option — this file, which contains a large collection of US
macroeconomic time series, is supplied with the distribution.

Chapter 4. Data files 20

You won’t find anything under “RATS 4” unless you have purchased RATS data.2 If you do possess
RATS data you should go into gretl’s “File, Preferences, General” dialog, select the Databases tab,
and fill in the correct path to your RATS files.

If your computer is connected to the internet you should find several databases (at Wake Forest
University) under “on database server”. You can browse these remotely; you also have the option
of installing them onto your own computer. The initial remote databases window has an item
showing, for each file, whether it is already installed locally (and if so, if the local version is up to
date with the version at Wake Forest).

Assuming you have managed to open a database you can import selected series into gretl’s workspace
by using the “Import” menu item in the database window, or via the popup menu that appears if
you click the right mouse button, or by dragging the series into the program’s main window.

Creating a gretl data file independently

It is possible to create a data file in one or other of gretl’s own formats using a text editor or
software tools such as awk, sed or perl. This may be a good choice if you have large amounts of
data already in machine readable form. You will, of course, need to study the gretl data formats
(XML format or “traditional” format) as described in Appendix A.

Further note

gretl has no problem compacting data series of relatively high frequency (e.g. monthly) to a lower
frequency (e.g. quarterly): you are given a choice of method (average, sum, start of period, or
end of period). But it has no way of converting lower frequency data to higher. Therefore if you
want to import series of various different frequencies from a database into gretl you must start by
importing a series of the lowest frequency you intend to use. This will initialize your gretl dataset to
the low frequency, and higher frequency data can be imported subsequently (they will be compacted
automatically). If you start with a high frequency series you will not be able to import any series of
lower frequency.

4.5 Missing data values

These are represented internally as DBL_MAX, the largest floating-point number that can be repre-
sented on the system (which is likely to be at least 10 to the power 300, and so should not be
confused with legitimate data values). In a native-format data file they should be represented as
NA. When importing CSV data gretl accepts several common representations of missing values in-
cluding −999, the string NA (in upper or lower case), a single dot, or simply a blank cell. Blank cells
should, of course, be properly delimited, e.g. 120.6,,5.38, in which the middle value is presumed
missing.

As for handling of missing values in the course of statistical analysis, gretl does the following:

• In calculating descriptive statistics (mean, standard deviation, etc.) under the summary com-
mand, missing values are simply skipped and the sample size adjusted appropriately.

• In running regressions gretl first adjusts the beginning and end of the sample range, trun-
cating the sample if need be. Missing values at the beginning of the sample are common in
time series work due to the inclusion of lags, first differences and so on; missing values at the
end of the range are not uncommon due to differential updating of series and possibly the
inclusion of leads.

If gretl detects any missing values “inside” the (possibly truncated) sample range for a regression,
the result depends on the character of the dataset and the estimator chosen. In many cases, the

2See www.estima.com

http://www.estima.com/

Chapter 4. Data files 21

program will automatically skip the missing observations when calculating the regression results.
In this situation a message is printed stating how many observations were dropped. On the other
hand, the skipping of missing observations is not supported for all procedures: exceptions include
all autoregressive estimators, system estimators such as SUR, and nonlinear least squares. In the
case of panel data, the skipping of missing observations is supported only if their omission leaves
a balanced panel. If missing observations are found in cases where they are not supported, gretl
gives an error message and refuses to produce estimates.

In case missing values in the middle of a dataset present a problem, the misszero function (use
with care!) is provided under the genr command. By doing genr foo = misszero(bar) you can
produce a series foo which is identical to bar except that any missing values become zeros. Then
you can use carefully constructed dummy variables to, in effect, drop the missing observations
from the regression while retaining the surrounding sample range.3

4.6 Data file collections

If you’re using gretl in a teaching context you may be interested in adding a collection of data files
and/or scripts that relate specifically to your course, in such a way that students can browse and
access them easily.

This is quite easy as of gretl version 1.2.1. There are three ways to access such collections of files:

• For data files: select the menu item “File, Open data, sample file”, or click on the folder icon
on the gretl toolbar.

• For script files: select the menu item “File, Open command file, practice file”.

When a user selects one of the items:

• The data or script files included in the gretl distribution are automatically shown (this includes
files relating to Ramanathan’s Introductory Econometrics and Greene’s Econometric Analysis).

• The program looks for certain known collections of data files available as optional extras,
for instance the datafiles from various econometrics textbooks (Wooldridge, Gujarati, Stock
and Watson) and the Penn World Table (PWT 5.6). (See the data page at the gretl website
for information on these collections.) If the additional files are found, they are added to the
selection windows.

• The program then searches for valid file collections (not necessarily known in advance) in
these places: the “system” data directory, the system script directory, the user directory, and
all first-level subdirectories of these. (For reference, typical values for these directories are
shown in Table 4.1.)

Linux MS Windows

system data dir /usr/share/gretl/data c:\userdata\gretl\data

system script dir /usr/share/gretl/scripts c:\userdata\gretl\scripts

user dir /home/me/gretl c:\userdata\gretl\user

Table 4.1: Typical locations for file collections

Any valid collections will be added to the selection windows. So what constitutes a valid file collec-
tion? This comprises either a set of data files in gretl XML format (with the .gdt suffix) or a set of

3genr also offers the inverse function to misszero, namely zeromiss, which replaces zeros in a given series with the
missing observation code.

http://gretl.sourceforge.net/gretl_data.html

Chapter 4. Data files 22

script files containing gretl commands (with .inp suffix), in each case accompanied by a “master
file” or catalog. The gretl distribution contains several example catalog files, for instance the file
descriptions in the misc sub-directory of the gretl data directory and ps_descriptions in the
misc sub-directory of the scripts directory.

If you are adding your own collection, data catalogs should be named descriptions and script cat-
alogs should be be named ps_descriptions. In each case the catalog should be placed (along with
the associated data or script files) in its own specific sub-directory (e.g. /usr/share/gretl/data/mydata
or c:\userdata\gretl\data\mydata).

The syntax of the (plain text) description files is straightforward. Here, for example, are the first
few lines of gretl’s “misc” data catalog:

Gretl: various illustrative datafiles
"arma","artificial data for ARMA script example"
"ects_nls","Nonlinear least squares example"
"hamilton","Prices and exchange rate, U.S. and Italy"

The first line, which must start with a hash mark, contains a short name, here “Gretl”, which
will appear as the label for this collection’s tab in the data browser window, followed by a colon,
followed by an optional short description of the collection.

Subsequent lines contain two elements, separated by a comma and wrapped in double quotation
marks. The first is a datafile name (leave off the .gdt suffix here) and the second is a short de-
scription of the content of that datafile. There should be one such line for each datafile in the
collection.

A script catalog file looks very similar, except that there are three fields in the file lines: a filename
(without its .inp suffix), a brief description of the econometric point illustrated in the script, and
a brief indication of the nature of the data used. Again, here are the first few lines of the supplied
“misc” script catalog:

Gretl: various sample scripts
"arma","ARMA modeling","artificial data"
"ects_nls","Nonlinear least squares (Davidson)","artificial data"
"leverage","Influential observations","artificial data"
"longley","Multicollinearity","US employment"

If you want to make your own data collection available to users, these are the steps:

1. Assemble the data, in whatever format is convenient.

2. Convert the data to gretl format and save as gdt files. It is probably easiest to convert the data
by importing them into the program from plain text, CSV, or a spreadsheet format (MS Excel
or Gnumeric) then saving them. You may wish to add descriptions of the individual variables
(the “Variable, Edit attributes” menu item), and add information on the source of the data (the
“Data, Edit info” menu item).

3. Write a descriptions file for the collection using a text editor.

4. Put the datafiles plus the descriptions file in a subdirectory of the gretl data directory (or user
directory).

5. If the collection is to be distributed to other people, package the data files and catalog in some
suitable manner, e.g. as a zipfile.

If you assemble such a collection, and the data are not proprietary, I would encourage you to submit
the collection for packaging as a gretl optional extra.

Chapter 5

Special functions in genr

5.1 Introduction

The genr command provides a flexible means of defining new variables. It is documented in the
Gretl Command Reference. This chapter offers a more expansive discussion of some of the special
functions available via genr and some of the finer points of the command.

5.2 Time-series filters

One sort of specialized function in genr is the time-series filter. Two such filters are currently
available, the Hodrick–Prescott filter and the Baxter–King bandpass filter. These are accessed using
hpfilt() and bkfilt() respectively: in each case the function takes one argument, the name of
the variable to be processed.

The Hodrick–Prescott filter

A time series yt may be decomposed into a trend or growth component gt and a cyclical component
ct .

yt = gt + ct , t = 1,2, . . . , T

The Hodrick–Prescott filter effects such a decomposition by minimizing the following:

T∑
t=1

(yt − gt)2 + λ
T−1∑
t=2

(
(gt+1 − gt)− (gt − gt−1)

)2 .

The first term above is the sum of squared cyclical components ct = yt − gt . The second term is a
multiple λ of the sum of squares of the trend component’s second differences. This second term
penalizes variations in the growth rate of the trend component: the larger the value of λ, the higher
is the penalty and hence the smoother the trend series.

Note that the hpfilt function in gretl produces the cyclical component, ct , of the original series.
If you want the smoothed trend you can subtract the cycle from the original:

genr ct = hpfilt(yt)
genr gt = yt - ct

Hodrick and Prescott (1997) suggest that a value of λ = 1600 is reasonable for quarterly data.
The default value in gretl is 100 times the square of the data frequency (which, of course, yields
1600 for quarterly data). The value can be adjusted using the set command, with a parameter of
hp_lambda. For example, set hp_lambda 1200.

The Baxter and King filter

Consider the spectral representation of a time series yt :

yt =
∫ π
−π
eiωdZ(ω)

23

Chapter 5. Special functions in genr 24

To extract the component of yt that lies between the frequencies ω and ω one could apply a
bandpass filter:

c∗t =
∫ π
−π
F∗(ω)eiωdZ(ω)

where F∗(ω) = 1 for ω < |ω| < ω and 0 elsewhere. This would imply, in the time domain,
applying to the series a filter with an infinite number of coefficients, which is undesirable. The
Baxter and King bandpass filter applies to yt a finite polynomial in the lag operator A(L):

ct = A(L)yt

where A(L) is defined as

A(L) =
k∑

i=−k
aiLi

The coefficients ai are chosen such that F(ω) = A(eiω)A(e−iω) is the best approximation to F∗(ω)
for a given k. Clearly, the higher k the better the approximation is, but since 2k observations have
to be discarded, a compromise is usually sought. Moreover, the filter has also other appealing
theoretical properties, among which the property that A(1) = 0, so a series with a single unit root
is made stationary by application of the filter.

In practice, the filter is normally used with monthly or quarterly data to extract the “business
cycle” component, namely the component between 6 and 36 quarters. Usual choices for k are 8 or
12 (maybe higher for monthly series). The default values for the frequency bounds are 8 and 32,
and the default value for the approximation order, k, is 8. You can adjust these values using the
set command. The keyword for setting the frequency limits is bkbp_limits and the keyword for
k is bkbp_k. Thus for example if you were using monthly data and wanted to adjust the frequency
bounds to 18 and 96, and k to 24, you could do

set bkbp_limits 18 96
set bkbp_k 24

These values would then remain in force for calls to the bkfilt function until changed by a further
use of set.

5.3 Resampling and bootstrapping

Another specialized function is the resampling, with replacement, of a series. Given an original
data series x, the command

genr xr = resample(x)

creates a new series each of whose elements is drawn at random from the elements of x. If the
original series has 100 observations, each element of x is selected with probability 1/100 at each
drawing. Thus the effect is to “shuffle” the elements of x, with the twist that each element of x may
appear more than once, or not at all, in xr.

The primary use of this function is in the construction of bootstrap confidence intervals or p-values.
Here is a simple example. Suppose we estimate a simple regression of y on x via OLS and find that
the slope coefficient has a reported t-ratio of 2.5 with 40 degrees of freedom. The two-tailed p-
value for the null hypothesis that the slope parameter equals zero is then 0.0166, using the t(40)
distribution. Depending on the context, however, we may doubt whether the ratio of coefficient to
standard error truly follows the t(40) distribution. In that case we could derive a bootstrap p-value
as shown in Example 5.1.

Under the null hypothesis that the slope with respect to x is zero, y is simply equal to its mean plus
an error term. We simulate y by resampling the residuals from the initial OLS and re-estimate the
model. We repeat this procedure a large number of times, and record the number of cases where

Chapter 5. Special functions in genr 25

the absolute value of the t-ratio is greater than 2.5: the proportion of such cases is our bootstrap
p-value. For a good discussion of simulation-based tests and bootstrapping, see Davidson and
MacKinnon (2004, chapter 4).

Example 5.1: Calculation of bootstrap p-value

ols y 0 x
save the residuals
genr ui = $uhat
scalar ybar = mean(y)
number of replications for bootstrap
scalar replics = 10000
scalar tcount = 0
series ysim = 0
loop replics --quiet
generate simulated y by resampling
ysim = ybar + resample(ui)
ols ysim 0 x
scalar tsim = abs(coeff(x) / stderr(x))
tcount += (tsim > 2.5)

endloop
printf "proportion of cases with |t| > 2.5 = %g\n", \

tcount / replics

5.4 Handling missing values

Four special functions are available for the handling of missing values. The boolean function
missing() takes the name of a variable as its single argument; it returns a series with value 1
for each observation at which the given variable has a missing value, and value 0 otherwise (that is,
if the given variable has a valid value at that observation). The function ok() is complementary to
missing; it is just a shorthand for !missing (where ! is the boolean NOT operator). For example,
one can count the missing values for variable x using

genr nmiss_x = sum(missing(x))

The function zeromiss(), which again takes a single series as its argument, returns a series where
all zero values are set to the missing code. This should be used with caution — one does not want
to confuse missing values and zeros — but it can be useful in some contexts. For example, one can
determine the first valid observation for a variable x using

genr time
genr x0 = min(zeromiss(time * ok(x)))

The function misszero() does the opposite of zeromiss, that is, it converts all missing values to
zero.

It may be worth commenting on the propagation of missing values within genr formulae. The
general rule is that in arithmetical operations involving two variables, if either of the variables has
a missing value at observation t then the resulting series will also have a missing value at t. The
one exception to this rule is multiplication by zero: zero times a missing value produces zero (since
this is mathematically valid regardless of the unknown value).

5.5 Retrieving internal variables

The genr command provides a means of retrieving various values calculated by the program in
the course of estimating models or testing hypotheses. The variables that can be retrieved in this

Chapter 5. Special functions in genr 26

way are listed in the Gretl Command Reference; here we say a bit more about the special variables
$test and $pvalue.

These variables hold, respectively, the value of the last test statistic calculated using an explicit
testing command and the p-value for that test statistic. If no such test has been performed at the
time when these variables are referenced, they will produce the missing value code. The “explicit
testing commands” that work in this way are as follows: add (joint test for the significance of vari-
ables added to a model); adf (Augmented Dickey–Fuller test, see below); arch (test for ARCH); chow
(Chow test for a structural break); coeffsum (test for the sum of specified coefficients); cusum (the
Harvey–Collier t-statistic); kpss (KPSS stationarity test, no p-value available); lmtest (see below);
meantest (test for difference of means); omit (joint test for the significance of variables omitted
from a model); reset (Ramsey’s RESET); restrict (general linear restriction); runs (runs test for
randomness); testuhat (test for normality of residual); and vartest (test for difference of vari-
ances). In most cases both a $test and a $pvalue are stored; the exception is the KPSS test, for
which a p-value is not currently available.

An important point to notice about this mechanism is that the internal variables $test and $pvalue
are over-written each time one of the tests listed above is performed. If you want to reference these
values, you must do so at the correct point in the sequence of gretl commands.

A related point is that some of the test commands generate, by default, more than one test statistic
and p-value; in these cases only the last values are stored. To get proper control over the retrieval
of values via $test and $pvalue you should formulate the test command in such a way that the
result is unambiguous. This comment applies in particular to the adf and lmtest commands.

• By default, the adf command generates three variants of the Dickey–Fuller test: one based
on a regression including a constant, one using a constant and linear trend, and one using a
constant and a quadratic trend. When you wish to reference $test or $pvalue in connection
with this command, you can control the variant that is recorded by using one of the flags
--nc, --c, --ct or --ctt with adf.

• By default, the lmtest command (which must follow an OLS regression) performs several
diagnostic tests on the regression in question. To control what is recorded in $test and
$pvalue you should limit the test using one of the flags --logs, --autocorr, --squares or
--white.

As an aid in working with values retrieved using $test and $pvalue, the nature of the test to which
these values relate is written into the descriptive label for the generated variable. You can read the
label for the variable using the label command (with just one argument, the name of the variable),
to check that you have retrieved the right value. The following interactive session illustrates this
point.

? adf 4 x1 --c

Augmented Dickey-Fuller tests, order 4, for x1
sample size 59
unit-root null hypothesis: a = 1

test with constant
model: (1 - L)y = b0 + (a-1)*y(-1) + ... + e
estimated value of (a - 1): -0.216889
test statistic: t = -1.83491
asymptotic p-value 0.3638

P-values based on MacKinnon (JAE, 1996)
? genr pv = $pvalue
Generated scalar pv (ID 13) = 0.363844
? label pv
pv=Dickey-Fuller pvalue (scalar)

Chapter 6

Panel data

6.1 Panel structure

Panel data are inherently three dimensional — the dimensions being variable, cross-sectional unit,
and time-period. For representation in a textual computer file (and also for gretl’s internal calcu-
lations) these three dimensions must somehow be flattened into two. This “flattening” involves
taking layers of the data that would naturally stack in a third dimension, and stacking them in the
vertical dimension.

Gretl always expects data to be arranged “by observation”, that is, such that each row represents
an observation (and each variable occupies one and only one column). In this context the flattening
of a panel data set can be done in either of two ways:

• Stacked cross-sections: the successive vertical blocks each comprise a cross-section for a
given period.

• Stacked time-series: the successive vertical blocks each comprise a time series for a given
cross-sectional unit.

You may use whichever arrangement is more convenient. Under gretl’s Sample menu you will find
an item “Restructure panel” which allows you to convert from stacked cross section form to stacked
time series or vice versa.

When you import panel data into gretl from a spreadsheet or comma separated format, the panel
nature of the data will not be recognized automatically (most likely the data will be treated as
“undated”). A panel interpretation can be imposed on the data in either of two ways.

1. Use the GUI menu item “Sample, Dataset structure”. In the first dialog box that appears,
select “Panel”. In the next dialog, make a selection between stacked time series or stacked
cross sections depending on how your data are organized. In the next, supply the number of
cross-sectional units in the dataset. Finally, check the specification that is shown to you, and
confirm the change if it looks OK.

2. Use the script command setobs. For panel data this command takes the form setobs freq
1:1 structure, where freq is replaced by the “block size” of the data (that is, the num-
ber of periods in the case of stacked time series, or the number of cross-sectional units
in the case of stacked cross-sections) and structure is either --stacked-time-series or
--stacked-cross-section. Two examples are given below: the first is suitable for a panel
in the form of stacked time series with observations from 20 periods; the second for stacked
cross sections with 5 cross-sectional units.

setobs 20 1:1 --stacked-time-series
setobs 5 1:1 --stacked-cross-section

Panel data arranged by variable

Publicly available panel data sometimes come arranged “by variable.” Suppose we have data on two
variables, x1 and x2, for each of 50 states in each of 5 years (giving a total of 250 observations

27

Chapter 6. Panel data 28

per variable). One textual representation of such a data set would start with a block for x1, with
50 rows corresponding to the states and 5 columns corresponding to the years. This would be
followed, vertically, by a block with the same structure for variable x2. A fragment of such a data
file is shown below, with quinquennial observations 1965–1985. Imagine the table continued for
48 more states, followed by another 50 rows for variable x2.

x1

1965 1970 1975 1980 1985

AR 100.0 110.5 118.7 131.2 160.4

AZ 100.0 104.3 113.8 120.9 140.6

If a datafile with this sort of structure is read into gretl, the program will interpret the columns as
distinct variables, so the data will not be usable “as is.” But there is a mechanism for correcting the
situation, namely the stack function within the genr command.

Consider the first data column in the fragment above: the first 50 rows of this column constitute a
cross-section for the variable x1 in the year 1965. If we could create a new variable by stacking the
first 50 entries in the second column underneath the first 50 entries in the first, we would be on the
way to making a data set “by observation” (in the first of the two forms mentioned above, stacked
cross-sections). That is, we’d have a column comprising a cross-section for x1 in 1965, followed by
a cross-section for the same variable in 1970.

The following gretl script illustrates how we can accomplish the stacking, for both x1 and x2. We
assume that the original data file is called panel.txt, and that in this file the columns are headed
with “variable names” p1, p2, . . . , p5. (The columns are not really variables, but in the first instance
we “pretend” that they are.)

open panel.txt
genr x1 = stack(p1..p5) --length=50
genr x2 = stack(p1..p5) --offset=50 --length=50
setobs 50 1.01 --stacked-cross-section
store panel.gdt x1 x2

The second line illustrates the syntax of the stack function. The double dots within the parenthe-
ses indicate a range of variables to be stacked: here we want to stack all 5 columns (for all 5 years).
The full data set contains 100 rows; in the stacking of variable x1 we wish to read only the first 50
rows from each column: we achieve this by adding --length=50. Note that if you want to stack a
non-contiguous set of columns you can put a comma-separated list within the parentheses, as in

genr x = stack(p1,p3,p5)

On line 3 we do the stacking for variable x2. Again we want a length of 50 for the components of
the stacked series, but this time we want gretl to start reading from the 50th row of the original
data, and we specify --offset=50.

Line 4 imposes a panel interpretation on the data, as explained in section 6.1. Finally, we save the
data in gretl format, with the panel interpretation, discarding the original “variables” p1 through
p5.

The illustrative script above is appropriate when the number of variable to be processed is small.
When then are many variables in the data set it will be more efficient to use a command loop to
accomplish the stacking, as shown in the following script. The setup is presumed to be the same
as in the previous section (50 units, 5 periods), but with 20 variables rather than 2.

open panel.txt
loop for i=1..20
genr k = ($i - 1) * 50

Chapter 6. Panel data 29

genr x$i = stack(p1..p5) --offset=k --length=50
endloop
setobs 50 1.01 --stacked-cross-section
store panel.gdt x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 \
x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

6.2 Dummy variables

In a panel study you may wish to construct dummy variables of one or both of the following
sorts: (a) dummies as unique identifiers for the cross-sectional units, and (b) dummies as unique
identifiers for the time periods. The former may be used to allow the intercept of the regression to
differ across the units, the latter to allow the intercept to differ across periods.

Three special functions are available to create such dummies. These are found under the “Data,
Add variables” menu in the GUI, or under the genr command in script mode or gretlcli.

1. “periodic dummies” (script command genr dummy). This command creates a set of dummy
variables identifying the periods. The variable dummy_1 will have value 1 in each row cor-
responding to a period 1 observation, 0 otherwise; dummy_2 will have value 1 in each row
corresponding to a period 2 observation, 0 otherwise; and so on.

2. “unit dummies” (script command genr unitdum). This command creates a set of dummy
variables identifying the cross-sectional units. The variable du_1 will have value 1 in each
row corresponding to a unit 1 observation, 0 otherwise; du_2 will have value 1 in each row
corresponding to a unit 2 observation, 0 otherwise; and so on.

3. “panel dummies” (script command genr paneldum). This creates both period and unit dummy
variables. The unit dummies are named du_1, du_2 and so on, while the period dummies are
named dt_1, dt_2, etc.

If a panel data set has the YEAR of the observation entered as one of the variables you can create a
periodic dummy to pick out a particular year, e.g. genr dum = (YEAR=1960). You can also create
periodic dummy variables using the modulus operator, %. For instance, to create a dummy with
value 1 for the first observation and every thirtieth observation thereafter, 0 otherwise, do

genr index
genr dum = ((index-1)%30) = 0

6.3 Lags and differences with panel data

If the time periods are evenly spaced you may want to use lagged values of variables in a panel
regression; you may also with to construct first differences of variables of interest.

Once a dataset is properly identified as a panel, gretl will handle the generation of such variables
correctly. For example the command genr x1_1 = x1(-1) will create a variable that contains the
first lag of x1 where available, and the missing value code where the lag is not available. When you
run a regression using such variables, the program will automatically skip the missing observations.

6.4 Pooled estimation

There is a special purpose estimation command for use with panel data, the “Pooled OLS” option
under the Model menu. This command is available only if the data set is recognized as a panel.
To take advantage of it, you should specify a model without any dummy variables representing
cross-sectional units. The routine presents estimates for straightforward pooled OLS, which treats
cross-sectional and time-series variation at par. This model may or may not be appropriate. Under

Chapter 6. Panel data 30

the Tests menu in the model window, you will find an item “panel diagnostics”, which tests pooled
OLS against the principal alternatives, the fixed effects and random effects models.

The fixed effects model adds a dummy variable for all but one of the cross-sectional units, allowing
the intercept of the regression to vary across the units. An F -test for the joint significance of these
dummies is presented: if the p-value for this test is small, that counts against the null hypothesis
(that the simple pooled model is adequate) and in favor of the fixed effects model.

The random effects model, on the other hand, decomposes the residual variance into two parts,
one part specific to the cross-sectional unit or “group” and the other specific to the particular
observation. (This estimator can be computed only if the panel is “wide” enough, that is, if the
number of cross-sectional units in the data set exceeds the number of parameters to be estimated.)
The Breusch–Pagan LM statistic tests the null hypothesis (again, that the pooled OLS estimator is
adequate) against the random effects alternative.

It is quite possible that the pooled OLS model is rejected against both of the alternatives, fixed
effects and random effects. How, then, do we assess the relative merits of the two alternative
estimators? The Hausman test (also reported, provided the random effects model can be estimated)
addresses this issue. If the unit- or group-specific error is uncorrelated with the independent
variables, the random effects estimator is more efficient than the fixed effects estimator; otherwise
the random effects estimator is inconsistent, in which case the fixed effects estimator is to be
preferred. The null hypothesis for the Hausman test is that the group-specific error is not so
correlated (and therefore the random effects model is preferable). Thus a low p-value for this tests
counts against the random effects model and in favor of fixed effects.

For a rigorous discussion of this topic, see Greene (2000), chapter 14.

6.5 Illustration: the Penn World Table

The Penn World Table (homepage at pwt.econ.upenn.edu) is a rich macroeconomic panel dataset,
spanning 152 countries over the years 1950–1992. The data are available in gretl format; please see
the gretl data site (this is a free download, although it is not included in the main gretl package).

Example 6.1 below opens pwt56_60_89.gdt, a subset of the pwt containing data on 120 countries,
1960–89, for 20 variables, with no missing observations (the full data set, which is also supplied
in the pwt package for gretl, has many missing observations). Total growth of real GDP, 1960–89,
is calculated for each country and regressed against the 1960 level of real GDP, to see if there is
evidence for “convergence” (i.e. faster growth on the part of countries starting from a low base).

Example 6.1: Use of the Penn World Table

open pwt56_60_89.gdt
for 1989 (the last obs), lag 29 gives 1960, the first obs
genr gdp60 = RGDPL(-29)
find total growth of real GDP over 30 years
genr gdpgro = (RGDPL - gdp60)/gdp60
restrict the sample to a 1989 cross-section
smpl --restrict YEAR=1989
convergence: did countries with a lower base grow faster?
ols gdpgro const gdp60
result: No! Try an inverse relationship?
genr gdp60inv = 1/gdp60
ols gdpgro const gdp60inv
no again. Try treating Africa as special?
genr afdum = (CCODE = 1)
genr afslope = afdum * gdp60
ols gdpgro const afdum gdp60 afslope

http://pwt.econ.upenn.edu/
http://gretl.sourceforge.net/gretl_data.html

Chapter 7

Sub-sampling a dataset

7.1 Introduction

Some subtle issues can arise here. This chapter attempts to explain the issues.

A sub-sample may be defined in relation to a full data set in two different ways: we will refer to
these as “setting” the sample and “restricting” the sample respectively.

7.2 Setting the sample

By “setting” the sample we mean defining a sub-sample simply by means of adjusting the starting
and/or ending point of the current sample range. This is likely to be most relevant for time-series
data. For example, one has quarterly data from 1960:1 to 2003:4, and one wants to run a regression
using only data from the 1970s. A suitable command is then

smpl 1970:1 1979:4

Or one wishes to set aside a block of observations at the end of the data period for out-of-sample
forecasting. In that case one might do

smpl ; 2000:4

where the semicolon is shorthand for “leave the starting observation unchanged”. (The semicolon
may also be used in place of the second parameter, to mean that the ending observation should be
unchanged.) By “unchanged” here, we mean unchanged relative to the last smpl setting, or relative
to the full dataset if no sub-sample has been defined up to this point. For example, after

smpl 1970:1 2003:4
smpl ; 2000:4

the sample range will be 1970:1 to 2000:4.An incremental or relative form of setting the sample
range is also supported. In this case a relative offset should be given, in the form of a signed integer
(or a semicolon to indicate no change), for both the starting and ending point. For example

smpl +1 ;

will advance the starting observation by one while preserving the ending observation, and

smpl +2 -1

will both advance the starting observation by two and retard the ending observation by one.An
important feature of “setting” the sample as described above is that it necessarily results in the
selection of a subset of observations that are contiguous in the full dataset. The structure of the
dataset is therefore unaffected (for example, if it is a quarterly time series before setting the sample,
it remains a quarterly time series afterwards).

31

Chapter 7. Sub-sampling a dataset 32

7.3 Restricting the sample

By “restricting” the sample we mean selecting observations on the basis of some Boolean (logical)
criterion, or by means of a random number generator. This is likely to be most relevant for cross-
sectional or panel data.Suppose we have data on a cross-section of individuals, recording their
gender, income and other characteristics. We wish to select for analysis only the women. If we have
a gender dummy variable with value 1 for men and 0 for women we could do

smpl gender=0 --restrict

to this effect. Or suppose we want to restrict the sample to respondents with incomes over $50,000.
Then we could use

smpl income>50000 --restrict

A question arises here. If we issue the two commands above in sequence, what do we end up with
in our sub-sample: all cases with income over 50000, or just women with income over 50000? By
default, in a gretl script, the answer is the latter: women with income over 50000. The second
restriction augments the first, or in other words the final restriction is the logical product of the
new restriction and any restriction that is already in place. If you want a new restriction to replace
any existing restrictions you can first recreate the full dataset using

smpl full

Alternatively, you can add the replace option to the smpl command:

smpl income>50000 --restrict --replace

This option has the effect of automatically re-establishing the full dataset before applying the new
restriction.

Unlike a simple “setting” of the sample, “restricting” the sample may result in selection of non-
contiguous observations from the full data set. It may also change the structure of the data set.This
can be seen in the case of panel data. Say we have a panel of five firms (indexed by the variable
firm) observed in each of several years (identified by the variable year). Then the restriction

smpl year=1995 --restrict

produces a dataset that is not a panel, but a cross-section for the year 1995. Similarly

smpl firm=3 --restrict

produces a time-series dataset for firm number 3.

For these reasons (possible non-contiguity in the observations, possible change in the structure of
the data), gretl acts differently when you “restrict” the sample as opposed to simply “setting” it. In
the case of setting, the program merely records the starting and ending observations and uses these
as parameters to the various commands calling for the estimation of models, the computation of
statistics, and so on. In the case of restriction, the program makes a reduced copy of the dataset
and by default treats this reduced copy as a simple, undated cross-section.1

If you wish to re-impose a time-series or panel interpretation of the reduced dataset you can do so
using the setobs command, or the GUI menu item “Sample, Dataset structure”.

The fact that “restricting” the sample results in the creation of a reduced copy of the original
dataset may raise an issue when the dataset is very large (say, several thousands of observations).
With such a dataset in memory, the creation of a copy may lead to a situation where the computer
runs low on memory for calculating regression results. You can work around this as follows:

1With one exception: if you start with a balanced panel dataset and the restriction is such that it preserves a balanced
panel — for example, it results in the deletion of all the observations for one cross-sectional unit — then the reduced
dataset is still, by default, treated as a panel.

Chapter 7. Sub-sampling a dataset 33

1. Open the full data set, and impose the sample restriction.

2. Save a copy of the reduced data set to disk.

3. Close the full dataset and open the reduced one.

4. Proceed with your analysis.

7.4 Random sampling

With very large datasets (or perhaps to study the properties of an estimator) you may wish to draw
a random sample from the full dataset. This can be done using, for example,

smpl 100 --random

to select 100 cases. If you want the sample to be reproducible, you should set the seed for the
random number generator first, using set. This sort of sampling falls under the “restriction”
category: a reduced copy of the dataset is made.

7.5 The Sample menu items

The discussion above has focused on the script command smpl. You can also use the items under
the Sample menu in the GUI program to select a sub-sample.

The menu items mostly work in the same way as the corresponding smpl variant, except that when
you use the item “Sample, Restrict based on criterion”, and the dataset is already sub-sampled,
you are given the option of preserving or replacing the current restriction. Replacing the current
restriction means, in effect, invoking the replace option described above (Section 7.3).

Chapter 8

Graphs and plots

8.1 Gnuplot graphs

A separate program, gnuplot, is called to generate graphs. Gnuplot is a very full-featured graphing
program with myriad options. It is available from www.gnuplot.info (but note that a copy of gnuplot
is bundled with the MS Windows version of gretl). gretl gives you direct access, via a graphical
interface, to a subset of gnuplot’s options and it tries to choose sensible values for you; it also
allows you to take complete control over graph details if you wish.

With a graph displayed, you can click on the graph window for a pop-up menu with the following
options.

• Save as PNG: Save the graph in Portable Network Graphics format.

• Save as postscript: Save in encapsulated postscript (EPS) format.

• Save as Windows metafile: Save in Enhanced Metafile (EMF) format.

• Save to session as icon: The graph will appear in iconic form when you select “Icon view” from
the Session menu.

• Zoom: Lets you select an area within the graph for closer inspection (not available for all
graphs).

• Print: On the Gnome desktop only, lets you print the graph directly.

• Copy to clipboard: MS Windows only, lets you paste the graph into Windows applications such
as MS Word.1

• Edit: Opens a controller for the plot which lets you adjust various aspects of its appearance.

• Close: Closes the graph window.

Displaying data labels

In the case of a simple X-Y scatterplot (with or without a line of best fit displayed), some further
options are available if the dataset includes “case markers” (that is, labels identifying each observa-
tion).2 With a scatter plot displayed, when you move the mouse pointer over a data point its label
is shown on the graph. By default these labels are transient: they do not appear in the printed or
copied version of the graph. They can be removed by selecting “Clear data labels” from the graph
pop-up menu. If you want the labels to be affixed permanently (so they will show up when the
graph is printed or copied), you have two options.

• To affix the labels currently shown on the graph, select “Freeze data labels” from the graph
pop-up menu.

1For best results when pasting graphs into MS Office applications, choose the application’s “Edit, Paste Special...” menu
item, and select the option “Picture (Enhanced Metafile)”.

2For an example of such a dataset, see the Ramanathan file data4-10: this contains data on private school enrollment
for the 50 states of the USA plus Washington, DC; the case markers are the two-letter codes for the states.

34

http://www.gnuplot.info/

Chapter 8. Graphs and plots 35

• To affix labels for all points in the graph, select “Edit” from the graph pop-up and check the
box titled “Show all data labels”. This option is available only if there are less than 55 data
points, and it is unlikely to produce good results if the points are tightly clustered since the
labels will tend to overlap.

To remove labels that have been affixed in either of these ways, select “Edit” from the graph pop-up
and uncheck “Show all data labels”.

Advanced options

If you know something about gnuplot and wish to get finer control over the appearance of a graph
than is available via the graphical controller (“Edit” option), you have two further options.

• Once the graph is saved as a session icon, you can right-click on its icon for a further pop-up
menu. One of the otions here is “Edit plot commands”, which opens an editing window with
the actual gnuplot commands displayed. You can edit these commands and either save them
for future processing or send them to gnuplot (with the “File/Send to gnuplot” menu item in
the plot commands editing window).

• Another way to save the plot commands (or to save the displayed plot in formats other than
EPS or PNG) is to use “Edit” item on a graph’s pop-up menu to invoke the graphical controller,
then click on the “Output to file” tab in the controller. You are then presented with a drop-
down menu of formats in which to save the graph.

To find out more about gnuplot see the online manual or www.gnuplot.info.

See also the entry for gnuplot in the Gretl Command Reference — and the graph and plot com-
mands for “quick and dirty” ASCII graphs.

Figure 8.1: gretl’s gnuplot controller

8.2 Boxplots

Boxplots are not generated using gnuplot, but rather by gretl itself.

These plots (after Tukey and Chambers) display the distribution of a variable. The central box
encloses the middle 50 percent of the data, i.e. it is bounded by the first and third quartiles. The
“whiskers” extend to the minimum and maximum values. A line is drawn across the box at the
median.

http://ricardo.ecn.wfu.edu/gnuplot.html
http://www.gnuplot.info/

Chapter 8. Graphs and plots 36

In the case of notched boxes, the notch shows the limits of an approximate 90 percent confidence
interval. This is obtained by the bootstrap method, which can take a while if the data series is very
long.

Clicking the mouse in the boxplots window brings up a menu which enables you to save the plots
as encapsulated postscript (EPS) or as a full-page postscript file. Under the X window system you
can also save the window as an XPM file; under MS Windows you can copy it to the clipboard as a
bitmap. The menu also gives you the option of opening a summary window which displays five-
number summaries (minimum, first quartile, median, third quartile, maximum), plus a confidence
interval for the median if the “notched” option was chosen.

Some details of gretl’s boxplots can be controlled via a (plain text) file named .boxplotrc which
is looked for, in turn, in the current working directory, the user’s home directory (corresponding
to the environment variable HOME) and the gretl user directory (which is displayed and may be
changed under the “File, Preferences, General” menu). Options that can be set in this way are the
font to use when producing postscript output (must be a valid generic postscript font name; the
default is Helvetica), the size of the font in points (also for postscript output; default is 12), the
minimum and maximum for the y-axis range, the width and height of the plot in pixels (default,
560 x 448), whether numerical values should be printed for the quartiles and median (default, don’t
print them), and whether outliers (points lying beyond 1.5 times the interquartile range from the
central box) should be indicated separately (default, no). Here is an example:

font = Times-Roman
fontsize = 16
max = 4.0
min = 0
width = 400
height = 448
numbers = %3.2f
outliers = true

On the second to last line, the value associated with numbers is a “printf” format string as in the C
programming language; if specified, this controls the printing of the median and quartiles next to
the boxplot, if no numbers entry is given these values are not printed. In the example, the values
will be printed to a width of 3 digits, with 2 digits of precision following the decimal point.

Not all of the options need be specified, and the order doesn’t matter. Lines not matching the
pattern “key = value” are ignored, as are lines that begin with the hash mark, #.

After each variable specified in the boxplot command, a parenthesized boolean expression may
be added, to limit the sample for the variable in question. A space must be inserted between the
variable name or number and the expression. Suppose you have salary figures for men and women,
and you have a dummy variable GENDER with value 1 for men and 0 for women. In that case you
could draw comparative boxplots with the following line in the boxplots dialog:

salary (GENDER=1) salary (GENDER=0)

Chapter 9

Nonlinear least squares

9.1 Introduction and examples

As of version 1.0.9, gretl supports nonlinear least squares (NLS) using a variant of the Levenberg–
Marquandt algorithm. The user must supply a specification of the regression function; prior to
giving this specification the parameters to be estimated must be “declared” and given initial values.
Optionally, the user may supply analytical derivatives of the regression function with respect to
each of the parameters. The tolerance (criterion for terminating the iterative estimation procedure)
can be set using the genr command.

The syntax for specifying the function to be estimated is the same as for the genr command. Here
are two examples, with accompanying derivatives.

Example 9.1: Consumption function from Greene

nls C = alpha + beta * Y^gamma
deriv alpha = 1
deriv beta = Y^gamma
deriv gamma = beta * Y^gamma * log(Y)
end nls

Example 9.2: Nonlinear function from Russell Davidson

nls y = alpha + beta * x1 + (1/beta) * x2
deriv alpha = 1
deriv beta = x1 - x2/(beta*beta)
end nls

Note the command words nls (which introduces the regression function), deriv (which introduces
the specification of a derivative), and end nls, which terminates the specification and calls for
estimation. If the --vcv flag is appended to the last line the covariance matrix of the parameter
estimates is printed.

9.2 Initializing the parameters

The parameters of the regression function must be given initial values prior to the nls command.
This can be done using the genr command (or, in the GUI program, via the menu item “Define new
variable”).

In some cases, where the nonlinear function is a generalization of (or a restricted form of) a linear
model, it may be convenient to run an ols and initialize the parameters from the OLS coefficient
estimates. In relation to the first example above, one might do:

ols C 0 Y
genr alpha = coeff(0)
genr beta = coeff(Y)
genr gamma = 1

37

Chapter 9. Nonlinear least squares 38

And in relation to the second example one might do:

ols y 0 x1 x2
genr alpha = coeff(0)
genr beta = coeff(x1)

9.3 NLS dialog window

It is probably most convenient to compose the commands for NLS estimation in the form of a gretl
script but you can also do so interactively, by selecting the item “Nonlinear Least Squares” under
the Model menu. This opens a dialog box where you can type the function specification (possibly
prefaced by genr lines to set the initial parameter values) and the derivatives, if available. An
example of this is shown in Figure 9.1. Note that in this context you do not have to supply the nls
and end nls tags.

Figure 9.1: NLS dialog box

9.4 Analytical and numerical derivatives

If you are able to figure out the derivatives of the regression function with respect to the para-
meters, it is advisable to supply those derivatives as shown in the examples above. If that is not
possible, gretl will compute approximate numerical derivatives. The properties of the NLS algo-
rithm may not be so good in this case (see Section 9.7).

If analytical derivatives are supplied, they are checked for consistency with the given nonlinear
function. If the derivatives are clearly incorrect estimation is aborted with an error message. If the
derivatives are “suspicious” a warning message is issued but estimation proceeds. This warning
may sometimes be triggered by incorrect derivatives, but it may also be triggered by a high degree
of collinearity among the derivatives.

Note that you cannot mix analytical and numerical derivatives: you should supply expressions for
all of the derivatives or none.

9.5 Controlling termination

The NLS estimation procedure is an iterative process. Iteration is terminated when a convergence
criterion is met or when a set maximum number of iterations is reached, whichever comes first. The
maximum number of iterations is 100×(k+1) when analytical derivatives are given and 200×(k+1)
when numerical derivatives are used, where k denotes the number of parameters being estimated.
The convergence criterion is that the relative error in the sum of squares, and/or the relative error

Chapter 9. Nonlinear least squares 39

between the the coefficient vector and the solution, is estimated to be no larger than some small
value. This “small value” is by default the machine precision to the power 3/4, but it can be set
with the genr command using the special variable toler. For example

genr toler = .0001

will relax the tolerance to 0.0001.

9.6 Details on the code

The underlying engine for NLS estimation is based on the minpack suite of functions, available
from netlib.org. Specifically, the following minpack functions are called:

lmder Levenberg–Marquandt algorithm with analytical derivatives

chkder Check the supplied analytical derivatives

lmdif Levenberg–Marquandt algorithm with numerical derivatives

fdjac2 Compute final approximate Jacobian when using numerical derivatives

dpmpar Determine the machine precision

On successful completion of the Levenberg–Marquandt iteration, a Gauss–Newton regression is
used to calculate the covariance matrix for the parameter estimates. Since NLS results are asymp-
totic, there is room for debate over whether or not a correction for degrees of freedom should
be applied when calculating the standard error of the regression (and the standard errors of the
parameter estimates). For comparability with OLS, and in light of the reasoning given in Davidson
and MacKinnon (1993), the estimates shown in gretl do use a degrees of freedom correction.

9.7 Numerical accuracy

Table 9.1 shows the results of running the gretl NLS procedure on the 27 Statistical Reference
Datasets made available by the U.S. National Institute of Standards and Technology (NIST) for test-
ing nonlinear regression software.1 For each dataset, two sets of starting values for the parameters
are given in the test files, so the full test comprises 54 runs. Two full tests were performed, one
using all analytical derivatives and one using all numerical approximations. In each case the default
tolerance was used.2

Out of the 54 runs, gretl failed to produce a solution in 4 cases when using analytical derivatives,
and in 5 cases when using numeric approximation. Of the four failures in analytical derivatives
mode, two were due to non-convergence of the Levenberg–Marquandt algorithm after the maxi-
mum number of iterations (on MGH09 and Bennett5, both described by NIST as of “Higher diffi-
culty”) and two were due to generation of range errors (out-of-bounds floating point values) when
computing the Jacobian (on BoxBOD and MGH17, described as of “Higher difficulty” and “Average
difficulty” respectively). The additional failure in numerical approximation mode was on MGH10
(“Higher difficulty”, maximum number of iterations reached).

The table gives information on several aspects of the tests: the number of outright failures, the
average number of iterations taken to produce a solution and two sorts of measure of the accuracy
of the estimates for both the parameters and the standard errors of the parameters.

For each of the 54 runs in each mode, if the run produced a solution the parameter estimates
obtained by gretl were compared with the NIST certified values. We define the “minimum correct
figures” for a given run as the number of significant figures to which the least accurate gretl esti-
mate agreed with the certified value, for that run. The table shows both the average and the worst

1For a discussion of gretl’s accuracy in the estimation of linear models, see Appendix C.
2The data shown in the table were gathered from a pre-release build of gretl version 1.0.9, compiled with gcc 3.3,

linked against glibc 2.3.2, and run under Linux on an i686 PC (IBM ThinkPad A21m).

http://www.netlib.org/minpack/

Chapter 9. Nonlinear least squares 40

case value of this variable across all the runs that produced a solution. The same information is
shown for the estimated standard errors.3

The second measure of accuracy shown is the percentage of cases, taking into account all parame-
ters from all successful runs, in which the gretl estimate agreed with the certified value to at least
the 6 significant figures which are printed by default in the gretl regression output.

Table 9.1: Nonlinear regression: the NIST tests

Analytical derivatives Numerical derivatives

Failures in 54 tests 4 5

Average iterations 32 127

Mean of min. correct figures, 8.120 6.980

parameters

Worst of min. correct figures, 4 3

parameters

Mean of min. correct figures, 8.000 5.673

standard errors

Worst of min. correct figures, 5 2

standard errors

Percent correct to at least 6 figures, 96.5 91.9

parameters

Percent correct to at least 6 figures, 97.7 77.3

standard errors

Using analytical derivatives, the worst case values for both parameters and standard errors were
improved to 6 correct figures on the test machine when the tolerance was tightened to 1.0e−14.
Using numerical derivatives, the same tightening of the tolerance raised the worst values to 5
correct figures for the parameters and 3 figures for standard errors, at a cost of one additional
failure of convergence.

Note the overall superiority of analytical derivatives: on average solutions to the test problems
were obtained with substantially fewer iterations and the results were more accurate (most notably
for the estimated standard errors). Note also that the six-digit results printed by gretl are not 100
percent reliable for difficult nonlinear problems (in particular when using numerical derivatives).
Having registered this caveat, the percentage of cases where the results were good to six digits or
better seems high enough to justify their printing in this form.

3For the standard errors, I excluded one outlier from the statistics shown in the table, namely Lanczos1. This is an odd
case, using generated data with an almost-exact fit: the standard errors are 9 or 10 orders of magnitude smaller than the
coefficients. In this instance gretl could reproduce the certified standard errors to only 3 figures (analytical derivatives)
and 2 figures (numerical derivatives).

Chapter 10

Maximum likelihood estimation

10.1 Generic ML estimation with gretl

Maximum likelihood estimation is a cornerstone of modern inferential procedures. Gretl provides
a way to implement this method for a wide range of estimation problems, by use of the mle com-
mand. We give here a few examples.

To give a fiundation for the examples that follow, we start from a brief reminder on the basics
of ML estimation. Given a sample of size T , it is possible to define the density function1 for the
whole sample, namely the joint distribution of all the observations f(Y;θ), where Y =

{
y1, . . . , yT

}
.

Its shape is determined by a vector of unknown parameters θ, which we assume is contained in
a set Θ, and which can be used to evaluate the probability of observing a sample with any given
characteristic.

After observing the data, the values Y are given, and this function can be evaluated for any legiti-
mate value of θ. In this case, we prefer to call it the likelihood function; the need for another name
stems from the fact that this function works as a density when we use the yt ’s as arguments and θ
as parameters, whereas in this context θ is taken as the function’s argument, and the data Y only
have the role of determining its shape.

In standard cases, this function has a unique maximum. The location of the maximum is unaffected
if we consider the logarithm of the likelihood (or log-likelihood for short): this function will be
denoted as

`(θ) = logf(Y;θ).

The log-likelihood functions that gretl can handle are those when `(θ) can be written as

`(θ) =
T∑
t=1

`t(θ),

which is true in most cases of interest. The functions `t(θ) are called the log-likelihood contribu-
tions.

Moreover, the location of the maximum is obviously determined by the data Y. This means that the
value

θ̂(Y) =Argmax
θ∈Θ `(θ) (10.1)

is some function of the observed data (a statistic), which has the property, under mild conditions,
of being a consistent, asymptotically normal and asymptotically efficient estimator of θ.

Sometimes it is possible to write down explicitly the function θ̂(Y); in general, it need not be so. In
these circumstances, the maximum can be found by means of numerical techniques. These often
rely on the fact that the log-likelihood is a smooth function of θ, and therefore on the maximum its
partial derivatives should all be 0. The gradient of the log-likelihood is called the score vector and
is a function that enjoys many interesting statistical properties in its own right; it will be denoted
here as s(θ).

Gradient-based methods can be shortly illustrated as follows:

1We are imagining here that our data are a realisation of continuous random variables. For discrete random variable,
everything continues to apply by referring to the probability function instead of the density. In both cases, the distribution
may be conditional on some exogenous variables.

41

Chapter 10. Maximum likelihood estimation 42

1. pick a point θ0 ∈ Θ ;

2. evaluate s(θ0);

3. if s(θ0) is “small”, stop. Otherwise, compute a direction vector d(s(θ0));

4. evaluate θ1 = θ0 + d(s(θ0)) ;

5. substitute θ0 with θ1 ;

6. restart from 2.

Many algorithms of this kind exist; they basically differ from one another in the way they compute
the direction vector d(s(θ0)), to ensure that `(θ1) > `(θ0) (so that we eventually end up on the
maximum).

The method gretl uses to maximize the log-likelihood is a gradient-based algorithm known as the
BFGS (Broyden, Fletcher, Goldfarb and Shanno) method. This technique is used in most econometric
and statistical packages, as is well-established and remarkably powerful. Clearly, in order to make
this technique operational, it must be possible to compute the vector s(θ) for any value of θ. In
some cases, the function s(θ) can be written explicitly in term of Y. At times, this is not possible
or too difficult; therefore, the function s(θ) is evaluated numerically.

The choice of the starting value θ0 is crucial in some contexts and inconsequential in others. In
general, however, it is advisable to start the algorithm from “sensible” values whenever possible. If
a consistent estimator is available, this is usually a safe and efficient choice: this ensures that in
large samples the starting point will be likely close to θ̂ and convergence can be achieved in few
iterations.

10.2 Gamma estimation

Suppose we have a sample of T independent and identically distributed observations from a
Gamma distribution. The density function for each observation xt is

f(xt) =
αpΓ(p)xp−1

t exp (−αxt) . (10.2)

The log-likelihood for the entire sample can be written as the logarithm of the joint density of all
the observations. Since these are independent and identical, the joint density is the product of the
individual densities, and hence its log is

`(α,p) =
T∑
t=1

log

[
αpΓ(p)xp−1

t exp (−αxt)
]
=

T∑
t=1

`t , (10.3)

where
`t = p · log(αxt)− γ(p)− logxt −αxt

and γ(·) is the log of the gamma function. In order to estimate the parameters α and p via ML, we
need to maximize (10.3) with respect to them. The corresponding gretl code snippet is

scalar alpha = 1
scalar p = 1

mle logl = p*ln(alpha * x) - lngamma(p) - ln(x) - alpha * x
end mle

The two statements

alpha = 1
p = 1

Chapter 10. Maximum likelihood estimation 43

are necessary to ensure that the variables p and alpha exist before the computation of logl is
attempted. The values of these variables will be changed by the execution of the mle command;
upon successful completion, they will be replaced by the ML estimates. The starting value is 1 for
both; this is arbitrary and does not matter much in this example (more on this later).

The above code can be made more readable, and marginally more efficient, by defining a variable
to hold α · xt . This command can be embedded into the mle block as follows:

scalar alpha = 1
scalar p = 1

mle logl = p*ln(ax) - lngamma(p) - ln(x) - ax
series ax = alpha*x
params alpha p
end mle

In this case, it is necessary to include the line params alpha p to set the symbols p and alpha
apart from ax, which is a temporarily generated variable and not a parameter to be estimated.

In a simple example like this, the choice of the starting values is almost inconsequential; the algo-
rithm is likely to converge no matter what the starting values are. However, consistent method-of-
moments estimators of p and α can be simply recovered from the sample mean m and variance V :
since it can be shown that

E(xt) = p/α V(xt) = p/α2,

it follows that the following estimators

ᾱ = m/V
p̄ = m · ᾱ

are consistent, and therefore suitable to be used as starting point for the algorithm. The gretl script
code then becomes

scalar m = mean(x)
scalar alpha = var(x)/m
scalar p = m*alpha

mle logl = p*ln(ax) - lngamma(p) - ln(x) - ax
series ax = alpha*x
params alpha p
end mle

10.3 Stochastic frontier cost function

When modeling a cost function, it is sometimes worthwhile to incorporate explicitly into the sta-
tistical model the notion that firms may be inefficient, so that the observed cost deviates from the
theoretical figure not only because of unobserved heterogeneity between firms, but also because
two firms could be operating at a different efficiency level, despite being identical under all other
respects. In this case we may write

Ci = C∗i +ui + vi,
where Ci is some variable cost indicator, C∗i is its “theoretical” value, ui is a zero-mean disturbance
term and vi is the inefficiency term, which is supposed to be nonnegative by its very nature.

A linear specification for C∗i is often chosen. For example, the Cobb-Douglas cost function arises
when C∗i is a linear function of the logarithms of the input prices and the output quantities.

The stochastic frontier model is a linear model of the form yi = xiβ + εi in which the error term
εi is the sum of ui and vi. A common postulate is that ui ∼ N(0, σ 2

u) and vi ∼
∣∣N(0, σ 2

v)
∣∣. If

Chapter 10. Maximum likelihood estimation 44

independence between ui and vi is also assumed, then it is possible to show that the density
function of εi has the form:

f(εi) =
√

2
π
Φ(λεi

σ

)
1
σ
φ
(
εi
σ

)
, (10.4)

where Φ(·) andφ(·) are, respectively, the distribution and density function of the standard normal,

σ =
√
σ 2
u + σ 2

v and λ = σu
σv .

As a consequence, the log-likelihood for one observation takes the form (apart form an irrelevant
constant)

`t = logΦ(λεi
σ

)
−
[

log(σ)+
ε2
i

2σ 2

]
;

therefore, a Cobb–Douglas cost function with stochastic frontier is the model described by the
following equations:

logCi = logC∗i + εi

logC∗i = c +
m∑
j=1

βj logyij +
n∑
j=1

αj logpij

εi = ui + vi
ui ∼ N(0, σ 2

u)

vi ∼
∣∣∣N(0, σ 2

v)
∣∣∣ .

In most cases, one wants to ensure that the homogeneity of the cost function with respect to
the prices holds by construction. Since this requirement is equivalent to

∑n
j=1αj = 1, the above

equation for C∗i can be rewritten as

logCi − logpin = c +
m∑
j=1

βj logyij +
n∑
j=2

αj(logpij − logpin)+ εi. (10.5)

The above equation could be estimated by OLS, but it would suffer from two drawbacks: first,
the OLS estimator for the intercept c is inconsistent because the disturbance term has a non-zero
expected value; second, the OLS estimators for the other parameters are consistent, but inefficient
in view of the non-normality of εi. Both issues can be addressed by estimating (10.5) by maximum
likelihood. Nevertheless, OLS estimation is a quick and convenient way to provide starting values
for the MLE algorithm.

The following gretl script code shows how to implement the model described so far. The banks91
file contains part of the data used in Lucchetti, Papi and Zazzaro (2001).

open banks91

Cobb-Douglas cost function

ols cost const y p1 p2 p3

Cobb-Douglas cost function with homogeneity restrictions

genr rcost = cost - p3
genr rp1 = p1 - p3
genr rp2 = p2 - p3

ols rcost const y rp1 rp2

Cobb-Douglas cost function with homogeneity restrictions
and inefficiency

Chapter 10. Maximum likelihood estimation 45

scalar b0 = coeff(const)
scalar b1 = coeff(y)
scalar b2 = coeff(rp1)
scalar b3 = coeff(rp2)

scalar su = 0.1
scalar sv = 0.1

mle logl = ln(cnorm(e*lambda/ss)) - (ln(ss) + 0.5*(e/ss)^2)
scalar ss = sqrt(su^2 + sv^2)
scalar lambda = su/sv
series e = rcost - b0*const - b1*y - b2*rp1 - b3*rp2
params b0 b1 b2 b3 su sv

end mle

10.4 GARCH models

GARCH models are handled by gretl via a native function. However, it is instructive to see how they
can be estimated through the mle command.

The following equations provide the simplest example of a GARCH(1,1) model:

yt = µ + εt
εt = ut · σt
ut ∼ N(0,1)
ht = ω+αε2

t−1 + βht−1.

Since the variance of yt depends on past values, writing down the log-likelihood function is not
simply a matter of summing the log densities for individual observations. As is common in time
series models, yt cannot be considered independent of the other observations in our sample, and
consequently the density function for the whole sample (the joint density for all observations) is
not just the product of the marginal densities.

Maximum likelihood estimation, in these cases, is achieved by considering conditional densities, so
what we maximize is a conditional likelihood function. If we define the information set at time t as

Ft =
{
yt , yt−1, . . .

}
,

then the density of yt conditional on Ft−1 is normal:

yt|Ft−1 ∼ N [µ,ht] .

By means of the properties of conditional distributions, the joint density can be factorized as
follows

f(yt , yt−1, . . .) =
 T∏
t=1

f(yt|Ft−1)

 · f(y0);

if we treat y0 as fixed, then the term f(y0) does not depend on the unknown parameters, and there-
fore the conditional log-likelihood can then be written as the sum of the individual contributions
as

`(µ,ω,α,β) =
T∑
t=1

`t , (10.6)

where

`t = log

[
1√
ht
φ
(
yt − µ√
ht

)]
= −1

2

[
log(ht)+

(yt − µ)2
ht

]
.

Chapter 10. Maximum likelihood estimation 46

The following script shows a simple application of this technique, which uses the data file djclose;
it is one of the example dataset supplied with gretl and contains daily data from the Dow Jones
stock index.

open djclose

series y = 100*ldiff(djclose)

scalar mu = 0.0
scalar omega = 1
scalar alpha = 0.4
scalar beta = 0.0

mle ll = -0.5*(log(h) + (e^2)/h)
series e = y - mu
series h = var(y)
series h = omega + alpha*(e(-1))^2 + beta*h(-1)
params mu omega alpha beta

end mle

10.5 Analytical derivatives

Computation of the score vector is essential for the working of the BFGS method. In all the previous
examples, no explicit formula for the computation of the score was given, so the algorithm was fed
numerically evaluated gradients. Numerical computation of the score for the i-th parameter is
performed via a finite approximation of the derivative, namely

∂`(θ1, . . . , θn)
∂θi

' `(θ1, . . . , θi + h, . . . , θn)− `(θ1, . . . , θi − h, . . . , θn)
2h

,

where h is a small number.

In many situations, this is rather efficient and accurate. However, one might want to avoid the
approximation and specify an exact function for the derivatives. As an example, consider the
following script:

nulldata 1000

genr x1 = normal()
genr x2 = normal()
genr x3 = normal()

genr ystar = x1 + x2 + x3 + normal()
genr y = (ystar > 0)

scalar b0 = 0
scalar b1 = 0
scalar b2 = 0
scalar b3 = 0

mle logl = y*ln(P) + (1-y)*ln(1-P)
series ndx = b0 + b1*x1 + b2*x2 + b3*x3
series P = cnorm(ndx)
params b0 b1 b2 b3

end mle --verbose

Here, 1000 data points are artificially generated for an ordinary probit model2: yt is a binary
variable, which takes the value 1 if y∗t = β1x1t +β2x2t +β3x3t + εt > 0 and 0 otherwise. Therefore,

2Again, gretl does provide a native probit command, but a probit model makes for a nice example here.

Chapter 10. Maximum likelihood estimation 47

yt = 1 with probability Φ(β1x1t+β2x2t+β3x3t) = πt . The probability function for one observation
can be written as

P(yt) = πytt (1−πt)1−yt ;
since the observations are independent and identically distributed, the log-likelihood is simply the
sum of the individual contributions. Hence

` =
T∑
t=1

yt log(πt)+ (1−yt) log(1−πt).

The --verbose switch at the end of the end mle statement produces a detailed account of the
iterations done by the BFGS algorithm.

In this case, numerical differentiation works rather well; nevertheless, computation of the analytical
score is straightforward, since the derivative ∂`

∂βi can be written as

∂`
∂βi

= ∂`
∂πt

· ∂πt
∂βi

via the chain rule, and it is easy to see that

∂`
∂πt

= yt
πt
− 1−yt

1−πt
∂πt
∂βi

= φ(β1x1t + β2x2t + β3x3t) · xit .

The mle block in the above script can therefore be modified as follows:

mle logl = y*ln(P) + (1-y)*ln(1-P)
series ndx = b0 + b1*x1 + b2*x2 + b3*x3
series P = cnorm(ndx)
series tmp = dnorm(ndx)*(y/P - (1-y)/(1-P))
deriv b0 = tmp
deriv b1 = tmp*x1
deriv b2 = tmp*x2
deriv b3 = tmp*x3

end mle --verbose

Note that the params statement has been replaced by a series of deriv statements; these have the
double function of identifying the parameters over which to optimize and providing an analytical
expression for their respective score elements.

Chapter 11

Model selection criteria

11.1 Introduction

In some contexts the econometrician chooses between alternative models based on a formal hy-
pothesis test. For example, one might choose a more general model over a more restricted one if
the restriction in question can be formulated as a testable null hypothesis, and the null is rejected
on an appropriate test.

In other contexts one sometimes seeks a criterion for model selection that somehow measures the
balance between goodness of fit or likelihood, on the one hand, and parsimony on the other. The
balancing is necessary because the addition of extra variables to a model cannot reduce the degree
of fit or likelihood, and is very likely to increase it somewhat even if the additional variables are
not truly relevant to the data-generating process.

The best known such criterion, for linear models estimated via least squares, is the adjusted R2,

R̄2 = 1− SSR/(n− k)
TSS/(n− 1)

where n is the number of observations in the sample, k denotes the number of parameters esti-
mated, and SSR and TSS denote the sum of squared residuals and the total sum of squares for
the dependent variable, respectively. Compared to the ordinary coefficient of determination or
unadjusted R2,

R2 = 1− SSR
TSS

the “adjusted” calculation penalizes the inclusion of additional parameters, other things equal.

11.2 Information criteria

A more general criterion in a similar spirit is Akaike’s (1974) “Information Criterion” (AIC). The
original formulation of this measure is

AIC = −2`(θ̂)+ 2k (11.1)

where `(θ̂) represents the maximum loglikelihood as a function of the vector of parameter esti-
mates, θ̂, and k (as above) denotes the number of “independently adjusted parameters within the
model.” In this formulation, with AIC negatively related to the likelihood and positively related to
the number of parameters, the researcher seeks the minimum AIC.

The AIC can be confusing, in that several variants of the calculation are “in circulation.” For exam-
ple, Davidson and MacKinnon (2004) present a simplified version,

AIC = `(θ̂)− k

which is just −2 times the original: in this case, obviously, one wants to maximize AIC.

In the case of models estimated by least squares, the loglikelihood can be written as

`(θ̂) = −n
2
(1+ log 2π − logn)− n

2
log SSR (11.2)

48

Chapter 11. Model selection criteria 49

Substituting (11.2) into (11.1) we get

AIC = n(1+ log 2π − logn)+n log SSR+ 2k

which can also be written as

AIC = n log
(

SSR
n

)
+ 2k+n(1+ log 2π) (11.3)

Some authors simplify the formula for the case of models estimated via least squares. For instance,
William Greene writes

AIC = log
(

SSR
n

)
+ 2k
n

(11.4)

This variant can be derived from (11.3) by dividing through by n and subtracting the constant
1+ log 2π . That is, writing AICG for the version given by Greene, we have

AICG =
1
n

AIC− (1+ log 2π)

Finally, Ramanathan gives a further variant:

AICR =
(

SSR
n

)
e2k/n

which is the exponential of the one given by Greene.

Gretl began by using the Ramanathan variant, but since version 1.3.1 the program has used the
original Akaike formula (11.1), and more specifically (11.3) for models estimated via least squares.

Although the Akaike criterion is designed to favor parsimony, arguably it does not go far enough in
that direction. For instance, if we have two nested models with k and k+1 parameters respectively,
and if the null hypothesis that parameter k + 1 equals 0 is true, in large samples the AIC will
nonetheless tend to select the less parsimonious model about 16 percent of the time (see Davidson
and MacKinnon, 2004, chapter 15).

An alternative to the AIC which avoids this problem is the Schwarz (1978) “Bayesian information
criterion” (BIC). The BIC can be written (in line with Akaike’s formulation of the AIC) as

BIC = −2`(θ̂)+ k logn

The multiplication of k by logn in the BIC means that the penalty for adding extra parameters
grows with the sample size. This ensures that, asymptotically, one will not select a larger model
over a correctly specified parsimonious model.

Gretl reports the AIC and BIC (calculated as explained above) for most sorts of models.

Chapter 12

Loop constructs

12.1 Introduction

The command loop opens a special mode in which gretl accepts a block of commands to be re-
peated one or more times. This feature is designed for use with Monte Carlo simulations, boot-
strapping of test statistics, and iterative estimation procedures. The general form of a loop is:

loop control-expression [--progressive | --verbose]
loop body

endloop

Five forms of control-expression are available, as explained below. In the loop body the following
commands are accepted: genr, ols, print, printf, pvalue, sim, smpl, store, summary, if, else
and endif.

By default, the genr command operates quietly in the context of a loop (without printing informa-
tion on the variable generated). To force the printing of feedback from genr you may specify the
--verbose option to loop.

The --progressive option to loop modifies the behavior of the commands ols, print and store
in a manner that may be useful with Monte Carlo analyses (see Section 12.3).

The following sections explain the various forms of the loop control expression and provide some
examples of use of loops.

☞ If you are carrying out a substantial Monte Carlo analysis with many thousands of repetitions, memory
capacity and processing time may be an issue. To minimize the use of computer resources, run your script
using the command-line program, gretlcli, with output redirected to a file.

12.2 Loop control variants

Count loop

The simplest form of loop control is a direct specification of the number of times the loop should
be repeated. We refer to this as a “count loop”. The number of repetitions may be a numerical
constant, as in loop 1000, or may be read from a variable, as in loop replics.

In the case where the loop count is given by a variable, say replics, in concept replics is an
integer scalar. If it is in fact a series, its first value is read. If the value is not integral, it is converted
to an integer by truncation. Note that replics is evaluated only once, when the loop is initially
compiled.

While loop

A second sort of control expression takes the form of the keyword while followed by an inequality:
the left-hand term should be the name of a predefined variable; the right-hand side may be either a
numerical constant or the name of another predefined variable. For example,

loop while essdiff > .00001

50

Chapter 12. Loop constructs 51

Execution of the commands within the loop will continue so long as the specified condition evalu-
ates as true. If the right-hand term of the inequality is a variable, it is evaluated at the top of the
loop at each iteration.

Index loop

A third form of loop control uses the special internal index variable i. In this case you specify
starting and ending values for i, which is incremented by one each time round the loop. The
syntax looks like this: loop i=1..20.

The index variable may be used within the loop body in one or both of two ways: you can access
the value of i (see Example 12.4) or you can use its string representation, $i (see Example 12.5).

The starting and ending values for the index can be given in numerical form, or by reference to
predefined variables. In the latter case the variables are evaluated once, when the loop is set up. In
addition, with time series data you can give the starting and ending values in the form of dates, as
in loop i=1950:1..1999:4.

For each loop

The fourth form of loop control also uses the internal variable i, but in this case the variable ranges
over a specified list of strings. The loop is executed once for each string in the list. This can be
useful for performing repetitive operations on a list of variables. Here is an example of the syntax:

loop foreach i peach pear plum
print "$i"

endloop

This loop will execute three times, printing out “peach”, “pear” and “plum” on the respective itera-
tions.

If you wish to loop across a list of variables that are contiguous in the dataset, you can give the
names of the first and last variables in the list, separated by “..”, rather than having to type all
the names. For example, say we have 50 variables AK, AL, . . . , WY, containing income levels for the
states of the US. To run a regression of income on time for each of the states we could do:

genr time
loop foreach i AL..WY

ols $i const time
endloop

For loop

The final form of loop control uses a simplified version of the for statement in the C programming
language. The expression is composed of three parts, separated by semicolons. The first part
specifies an initial condition, expressed in terms of a control variable; the second part gives a
continuation condition (in terms of the same control variable); and the third part specifies an
increment (or decrement) for the control variable, to be applied each time round the loop. The
entire expression is enclosed in parentheses. For example:

loop for (r=0.01; r<.991; r+=.01)

In this example the variable r will take on the values 0.01, 0.02, . . . , 0.99 across the 99 iterations.
Note that due to the finite precision of floating point arithmetic on computers it may be necessary
to use a continuation condition such as the above, r<.991, rather than the more “natural” r<=.99.
(Using double-precision numbers on an x86 processor, at the point where you would expect r to
equal 0.99 it may in fact have value 0.990000000000001.)

To expand on the rules for the three components of the control expression:

Chapter 12. Loop constructs 52

1. The initial condition must take the form LHS1 = RHS1. RHS1 must be a numeric constant or a
predefined variable. If the LHS1 variable does not exist already, it is automatically created.

2. The continuation condition must be of the form LHS1 op RHS2, where op can be <, >, <= or
>= and RHS2 must be a numeric constant or a predefined variable. If RHS2 is a variable it is
evaluated each time round the loop.

3. The increment or decrement expression must be of the form LHS1 += DELTA or LHS1 -=
DELTA, where DELTA is a numeric constant or a predefined variable. If DELTA is a variable, it
is evaluated only once, when the loop is set up.

12.3 Progressive mode

If the --progressive option is given for a command loop, the effects of the commands ols, print
and store are modified as follows.

ols: The results from each individual iteration of the regression are not printed. Instead, after
the loop is completed you get a printout of (a) the mean value of each estimated coefficient across
all the repetitions, (b) the standard deviation of those coefficient estimates, (c) the mean value of
the estimated standard error for each coefficient, and (d) the standard deviation of the estimated
standard errors. This makes sense only if there is some random input at each step.

print: When this command is used to print the value of a variable, you do not get a print each time
round the loop. Instead, when the loop is terminated you get a printout of the mean and standard
deviation of the variable, across the repetitions of the loop. This mode is intended for use with
variables that have a single value at each iteration, for example the error sum of squares from a
regression.

store: This command writes out the values of the specified variables, from each time round the
loop, to a specified file. Thus it keeps a complete record of the variables across the iterations. For
example, coefficient estimates could be saved in this way so as to permit subsequent examination
of their frequency distribution. Only one such store can be used in a given loop.

12.4 Loop examples

Monte Carlo example

A simple example of a Monte Carlo loop in “progressive” mode is shown in Example 12.1.

This loop will print out summary statistics for the ‘a’ and ‘b’ estimates and R2 across the 100 rep-
etitions. After running the loop, coeffs.gdt, which contains the individual coefficient estimates
from all the runs, can be opened in gretl to examine the frequency distribution of the estimates in
detail.

The command nulldata is useful for Monte Carlo work. Instead of opening a “real” data set,
nulldata 50 (for instance) opens a dummy data set, containing just a constant and an index
variable, with a series length of 50. Constructed variables can then be added using the genr com-
mand.See the set command for information on generating repeatable pseudo-random series.

Iterated least squares

Example 12.2 uses a “while” loop to replicate the estimation of a nonlinear consumption function
of the form

C = α+ βY γ + ε

as presented in Greene (2000, Example 11.3). This script is included in the gretl distribution under
the name greene11_3.inp; you can find it in gretl under the menu item “File, Open command file,
practice file, Greene...”.

Chapter 12. Loop constructs 53

Example 12.1: Simple Monte Carlo loop

nulldata 50
seed 547
genr x = 100 * uniform()
open a "progressive" loop, to be repeated 100 times
loop 100 --progressive

genr u = 10 * normal()
construct the dependent variable
genr y = 10*x + u
run OLS regression
ols y const x
grab the coefficient estimates and R-squared
genr a = coeff(const)
genr b = coeff(x)
genr r2 = $rsq
arrange for printing of stats on these
print a b r2
and save the coefficients to file
store coeffs.gdt a b

endloop

The option --print-final for the ols command arranges matters so that the regression results
will not be printed each time round the loop, but the results from the regression on the last iteration
will be printed when the loop terminates.

Example 12.3 (kindly contributed by Riccardo “Jack” Lucchetti of Ancona University) shows how a
loop can be used to estimate an ARMA model, exploiting the “outer product of the gradient” (OPG)
regression discussed by Davidson and MacKinnon in their Estimation and Inference in Econometrics.

Indexed loop examples

Example 12.4 shows an indexed loop in which the smpl is keyed to the index variable i. Suppose
we have a panel dataset with observations on a number of hospitals for the years 1991 to 2000
(where the year of the observation is indicated by a variable named year). We restrict the sample
to each of these years in turn and print cross-sectional summary statistics for variables 1 through
4.

Example 12.5 illustrates string substitution in an indexed loop.

The first time round this loop the variable V will be set to equal COMP1987 and the dependent
variable for the ols will be PBT1987. The next time round V will be redefined as equal to COMP1988
and the dependent variable in the regression will be PBT1988. And so on.

Chapter 12. Loop constructs 54

Example 12.2: Nonlinear consumption function

open greene11_3.gdt
run initial OLS
ols C 0 Y
genr essbak = $ess
genr essdiff = 1
genr beta = coeff(Y)
genr gamma = 1
iterate OLS till the error sum of squares converges
loop while essdiff > .00001

form the linearized variables
genr C0 = C + gamma * beta * Y^gamma * log(Y)
genr x1 = Y^gamma
genr x2 = beta * Y^gamma * log(Y)
run OLS
ols C0 0 x1 x2 --print-final --no-df-corr --vcv
genr beta = coeff(x1)
genr gamma = coeff(x2)
genr ess = $ess
genr essdiff = abs(ess - essbak)/essbak
genr essbak = ess

endloop
print parameter estimates using their "proper names"
noecho
printf "alpha = %g\n", coeff(0)
printf "beta = %g\n", beta
printf "gamma = %g\n", gamma

Chapter 12. Loop constructs 55

Example 12.3: ARMA 1, 1

open armaloop.gdt

genr c = 0
genr a = 0.1
genr m = 0.1

genr e = const * 0.0
genr de_c = e
genr de_a = e
genr de_m = e

genr crit = 1
loop while crit > 1.0e-9

one-step forecast errors
genr e = y - c - a*y(-1) - m*e(-1)

log-likelihood
genr loglik = -0.5 * sum(e^2)
print loglik

partials of forecast errors wrt c, a, and m
genr de_c = -1 - m * de_c(-1)
genr de_a = -y(-1) -m * de_a(-1)
genr de_m = -e(-1) -m * de_m(-1)

partials of l wrt c, a and m
genr sc_c = -de_c * e
genr sc_a = -de_a * e
genr sc_m = -de_m * e

OPG regression
ols const sc_c sc_a sc_m --print-final --no-df-corr --vcv

Update the parameters
genr dc = coeff(sc_c)
genr c = c + dc
genr da = coeff(sc_a)
genr a = a + da
genr dm = coeff(sc_m)
genr m = m + dm

printf " constant = %.8g (gradient = %#.6g)\n", c,
%dc

printf " ar1 coefficient = %.8g (gradient = %#.6g)\n", a, da
printf " ma1 coefficient = %.8g (gradient = %#.6g)\n", m, dm

genr crit = $T - $ess
print crit

endloop

genr se_c = stderr(sc_c)
genr se_a = stderr(sc_a)
genr se_m = stderr(sc_m)

noecho
print "
printf "constant = %.8g (se = %#.6g, t = %.4f)\n", c, se_c, c/se_c
printf "ar1 term = %.8g (se = %#.6g, t = %.4f)\n", a, se_a, a/se_a
printf "ma1 term = %.8g (se = %#.6g, t = %.4f)\n", m, se_m, m/se_m

Chapter 12. Loop constructs 56

Example 12.4: Panel statistics

open hospitals.gdt
loop i=1991..2000
smpl (year=i) --restrict --replace
summary 1 2 3 4

endloop

Example 12.5: String substitution

open bea.dat
loop i=1987..2001
genr V = COMP$i
genr TC = GOC$i - PBT$i
genr C = TC - V
ols PBT$i const TC V

endloop

Chapter 13

User-defined functions

13.1 Introduction

As of version 1.4.0, gretl contains a revised mechanism for defining functions in the context of a
script. Details follow.1

13.2 Defining a function

Functions must be defined before they are called. The syntax for defining a function looks like this

function function-name parameters
function body

end function

function-name is the unique identifier for the function. Names must start with a letter. They have
a maximum length of 31 characters; if you type a longer name it will be truncated. Function names
cannot contain spaces. You will get an error if you try to define a function having the same name
as an existing gretl command, or with the same name as a previously defined user function. To
avoid an error in the latter case (that is, to be able to redefine a user function), preface the function
definition with

function function-name clear

The parameters for a function (if any) are given in the form of a comma-separated list. Parameters
can be of three types: ordinary variables (data series), scalar variables, or named lists of variables.
Each element in the listing of parameters is composed of two terms: first a type specifier (series,
scalar or list) then the name by which the parameter shall be known within the function. An
example follows (the parentheses enclosing the list of parameters are optional):

function myfunc (series y, list xvars, scalar verbose)

When a function is called, the parameters are instantiated by arguments given by the caller. There
are automatic checks in place to ensure that the number of arguments given in a function call
matches the number of parameters, and that the types of the given arguments match the types
specified in the definition of the function. An error is flagged if either of these conditions is violated.
A series argument may be specified either using either the name of the variable in question or its ID
number. Scalar arguments may be specified by giving the name of a variable or a numerical value
(the ID number of a variable is not acceptable). List arguments must be specified by name.

The function body is composed of gretl commands, or calls to user-defined functions (that is,
functions may be nested). A function may call itself (that is, functions may be recursive). There is a
maximum “stacking depth” for user functions: at present this is set to 8. While the function body
may contain function calls, it may not contain function definitions. That is, you cannot define a
function inside another function.

Functions may be called, but may not be defined, within the context of a command loop (see Chap-
ter 12).

1Note that the revised definition of functions represents a backward-incompatible change relative to version 1.3.3 of
the program.

57

Chapter 13. User-defined functions 58

13.3 Calling a function

A user function is called or invoked by typing its name followed by zero or more arguments. If there
are two or more arguments these should be separated by commas. The following trivial example
illustrates a function call that correctly matches the function definition.

function definition
function ols_ess (series y, list xvars)
ols y 0 xvars --quiet
scalar myess = $ess
printf "ESS = %g\n", myess
return scalar myess

end function
main script
open data4-1
list xlist = 2 3 4
function call (the return value is ignored here)
ols_ess price, xlist

The function call gives two arguments: the first is a data series specified by name and the second
is a named list of regressors. Note that while the function offers the variable myess as a return
value, it is ignored by the caller in this instance. (As a side note here, if you want a function to
calculate some value having to do with a regression, but are not interested in the full results of the
regression, you may wish to use the --quiet flag with the estimation command as shown above.)

A second example shows how to write a function call that assigns return values to variables in the
caller:

function definition
function ess_uhat (series y, list xvars)
ols y 0 xvars --quiet
scalar myess = $ess
printf "ESS = %g\n", myess
series uh = $uhat
return scalar myess, series uh

end function
main script
open data4-1
list xlist = 2 3 4
function call
(SSR, resids) = ess_uhat price, xlist

13.4 Scope of variables

All variables created within a function are local to that function, and are destroyed when the func-
tion exits, unless they are made available as return values and these values are “picked up” or
assigned by the caller.

Functions do not have access to variables in “outer scope” (that is, variables that exist in the script
from which the function is called) except insofar as these are explicitly passed to the function as
arguments. Even in this case, what the function actually gets is a copy of the variables in question.
Therefore, variables in outer scope are never modified by a function other than via assignment of
the return values from the function.

13.5 Return values

Functions can return zero or more values; these can be series or scalars (not lists). Return values
are specified via a statement within the function body beginning with the keyword return, followed

Chapter 13. User-defined functions 59

by a comma-separated list, each element of which is composed of a type specifier and the name of
a variable (as in the listing of parameters). There can be only one such statement. An example of a
valid return statement is shown below:

return scalar SSR, series resid

Note that the return statement does not cause the function to return (exit) at the point where
it appears within the body of the function. Rather, it specifies which variables are available for
assignment when the function exits, and a function exits only when (a) the end of the function code
is reached, or (b) a funcerr statement is reached (see below), or (c) a gretl error occurs.

The funcerr keyword, which may be followed by a string enclosed in double quotes, causes a
function to exit with an error flagged. If a string is provided, this is printed on exit otherwise a
generic error message is printed.

13.6 Error checking

When gretl first reads and “compiles” a function definition there is minimal error-checking: the
only checks are that the function name is acceptable, and, so far as the body is concerned, that you
are not trying to define a function inside a function (see Section 13.2). Otherwise, if the function
body contains invalid commands this will become apparent only when the function is called, and
its commands are executed.

Chapter 14

Cointegration and Vector Error Correction Models

14.1 The Johansen cointegration test

The Johansen test for cointegration has to take into account what hypotheses one is willing to make
on the deterministic terms, which leads to the famous “five cases.” A full and general illustration of
the five cases requires a fair amount of matrix algebra, but an intuitive understanding of the issue
can be gained by means of a simple example.

Consider a series xt which behaves as follows

xt =m+ xt−1 + εt

where m is a real number and εt is a white noise process. As is easy to show, xt is a random
walk which fluctuates around a deterministic trend with slope m. In the special case m = 0, the
deterministic trend disappears and xt is a pure random walk.

Consider now another process yt , defined by

yt = k+ xt +ut

where, again, k is a real number and ut is a white noise process. Since ut is stationary by definition,
xt and yt cointegrate: that is, their difference

zt = yt − xt = k+ut

is a stationary process. For k = 0, zt is simple zero-mean white noise, whereas for k 6= 0 the process
zt is white noise with a non-zero mean.

After some simple substitutions, the two equations above can be represented jointly as a VAR(1)
system [

yt
xt

]
=
[
k+m
m

]
+
[

0 1

0 1

][
yt−1

xt−1

]
+
[
ut + εt
εt

]
or in VECM form[∆yt∆xt

]
=

[
k+m
m

]
+
[
−1 1

0 0

][
yt−1

xt−1

]
+
[
ut + εt
εt

]
=

=
[
k+m
m

]
+
[
−1

0

][
1 −1

][yt−1

xt−1

]
+
[
ut + εt
εt

]
=

= µ0 +αβ′
[
yt−1

xt−1

]
+ ηt = µ0 +αzt−1 + ηt ,

where β is the cointegration vector and α is the “loadings” or “adjustments” vector.

We are now in a position to consider three possible cases:

1. m 6= 0: In this case xt is trended, as we just saw; it follows that yt also follows a linear trend
because on average it keeps at a distance k from xt . The vector µ0 is unrestricted. This case
is the default for gretl’s vecm command.

60

Chapter 14. Cointegration and Vector Error Correction Models 61

2. m = 0 and k 6= 0: In this case, xt is not trended and as a consequence neither is yt . However,
the mean distance between yt and xt is non-zero. The vector µ0 is given by

µ0 =
[
k
0

]

which is not null and therefore the VECM shown above does have a constant term. The
constant, however, is subject to the restriction that its second element must be 0. More
generally, µ0 is a multiple of the vector α. Note that the VECM could also be written as

[∆yt∆xt
]
=
[
−1

0

][
1 −1 −k

]
yt−1

xt−1

1

+
[
ut + εt
εt

]

which incorporates the intercept into the cointegration vector. This is known as the “restricted
constant” case; it may be specified in gretl’s vecm command using the option flag --rc.

3. m = 0 and k = 0: This case is the most restrictive: clearly, neither xt nor yt are trended, and
the mean distance between them is zero. The vector µ0 is also 0, which explains why this case
is referred to as “no constant.” This case is specified using the option flag --nc with vecm.

In most cases, the choice between the three possibilities is based on a mix of empirical observation
and economic reasoning. If the variables under consideration seem to follow a linear trend then
we should not place any restriction on the intercept. Otherwise, the question arises of whether
it makes sense to specify a cointegration relationship which includes a non-zero intercept. One
example where this is appropriate is the relationship between two interest rates: generally these
are not trended, but the VAR might still have an intercept because the difference between the two
(the “interest rate spread”) might be stationary around a non-zero mean (for example, because of a
risk or liquidity premium).

The previous example can be generalized in three directions:

1. If a VAR of order greater than 1 is considered, the algebra gets more convoluted but the
conclusions are identical.

2. If the VAR includes more than two endogenous variables the cointegration rank r can be
greater than 1. In this case, α is a matrix with r columns, and the case with restricted constant
entails the restriction that µ0 should be some linear combination of the columns of α.

3. If a linear trend is included in the model, the deterministic part of the VAR becomes µ0+µ1t.
The reasoning is practically the same as above except that the focus now centers on µ1 rather
than µ0. The counterpart to the “restricted constant” case discussed above is a “restricted
trend” case, such that the cointegration relationships include a trend but the first differences
of the variables in question do not. In the case of an unrestricted trend, the trend appears
in both the cointegration relationships and the first differences, which corresponds to the
presence of a quadratic trend in the variables themselves (in levels). These two cases are
specified by the option flags --crt and --ct, respectively, with the vecm command.

Chapter 15

Troubleshooting gretl

15.1 Bug reports

Bug reports are welcome. Hopefully, you are unlikely to find bugs in the actual calculations done
by gretl (although this statement does not constitute any sort of warranty). You may, however,
come across bugs or oddities in the behavior of the graphical interface. Please remember that the
usefulness of bug reports is greatly enhanced if you can be as specific as possible: what exactly
went wrong, under what conditions, and on what operating system? If you saw an error message,
what precisely did it say?

15.2 Auxiliary programs

As mentioned above, gretl calls some other programs to accomplish certain tasks (gnuplot for
graphing, LATEX for high-quality typesetting of regression output, GNU R). If something goes wrong
with such external links, it is not always easy for gretl to produce an informative error message.
If such a link fails when accessed from the gretl graphical interface, you may be able to get more
information by starting gretl from the command prompt rather than via a desktop menu entry or
icon. On the X window system, start gretl from the shell prompt in an xterm; on MS Windows, start
the program gretlw32.exe from a console window or “DOS box”. Additional error messages may
be displayed on the terminal window.

Also please note that for most external calls, gretl assumes that the programs in question are
available in your “path” — that is, that they can be invoked simply via the name of the program,
without supplying the program’s full location.1 Thus if a given program fails, try the experiment of
typing the program name at the command prompt, as shown below.

Graphing Typesetting GNU R

X window system gnuplot latex, xdvi R

MS Windows wgnuplot.exe latex, windvi RGui.exe

If the program fails to start from the prompt, it’s not a gretl issue but rather that the program’s
home directory is not in your path, or the program is not installed (properly). For details on
modifying your path please see the documentation or online help for your operating system or
shell.

1The exception to this rule is the invocation of gnuplot under MS Windows, where a full path to the program is given.

62

Chapter 16

The command line interface

16.1 Gretl at the console

The gretl package includes the command-line program gretlcli. On Linux it can be run from the
console, or in an xterm (or similar). Under MS Windows it can be run in a console window (some-
times inaccurately called a “DOS box”). gretlcli has its own help file, which may be accessed by
typing “help” at the prompt. It can be run in batch mode, sending outout directly to a file (see also
the Gretl Command Reference).

If gretlcli is linked to the readline library (this is automatically the case in the MS Windows version;
also see Appendix B), the command line is recallable and editable, and offers command completion.
You can use the Up and Down arrow keys to cycle through previously typed commands. On a given
command line, you can use the arrow keys to move around, in conjunction with Emacs editing
keystokes.1 The most common of these are:

Keystroke Effect

Ctrl-a go to start of line

Ctrl-e go to end of line

Ctrl-d delete character to right

where “Ctrl-a” means press the “a” key while the “Ctrl” key is also depressed. Thus if you want
to change something at the beginning of a command, you don’t have to backspace over the whole
line, erasing as you go. Just hop to the start and add or delete characters. If you type the first
letters of a command name then press the Tab key, readline will attempt to complete the command
name for you. If there’s a unique completion it will be put in place automatically. If there’s more
than one completion, pressing Tab a second time brings up a list.

16.2 Changes from Ramanathan’s ESL

gretlcli inherits its basic command syntax from Ramu Ramanathan’s ESL, and command scripts
developed for ESL should be usable with few or no changes: the only things to watch for are multi-
line commands and the freq command.

• In ESL, a semicolon is used as a terminator for many commands. I decided to remove this
in gretlcli. Semicolons are simply ignored, apart from a few special cases where they have a
definite meaning: as a separator for two lists in the ar and tsls commands, and as a marker
for an unchanged starting or ending observation in the smpl command. In ESL semicolon
termination gives the possibility of breaking long commands over more than one line; in
gretlcli this is done by putting a trailing backslash \ at the end of a line that is to be continued.

• With freq, you can’t at present specify user-defined ranges as in ESL. A chi-square test for
normality has been added to the output of this command.

Note also that the command-line syntax for running a batch job is simplified. For ESL you typed,
e.g.

1Actually, the key bindings shown below are only the defaults; they can be customized. See the readline manual.

63

http://cnswww.cns.cwru.edu/~chet/readline/readline.html

Chapter 16. The command line interface 64

esl -b datafile < inputfile > outputfile

while for gretlcli you type:

gretlcli -b inputfile > outputfile

The inputfile is treated as a program argument; it should specify a datafile to use internally, using
the syntax open datafile or the special comment (* ! datafile *)

Appendix A

Data file details

A.1 Basic native format

In gretl’s native data format, a data set is stored in XML (extensible mark-up language). Data
files correspond to the simple DTD (document type definition) given in gretldata.dtd, which is
supplied with the gretl distribution and is installed in the system data directory (e.g. /usr/share/
gretl/data on Linux.) Data files may be plain text or gzipped. They contain the actual data values
plus additional information such as the names and descriptions of variables, the frequency of the
data, and so on.

Most users will probably not have need to read or write such files other than via gretl itself, but
if you want to manipulate them using other software tools you should examine the DTD and also
take a look at a few of the supplied practice data files: data4-1.gdt gives a simple example;
data4-10.gdt is an example where observation labels are included.

A.2 Traditional ESL format

For backward compatibility, gretl can also handle data files in the “traditional” format inherited
from Ramanathan’s ESL program. In this format (which was the default in gretl prior to version
0.98) a data set is represented by two files. One contains the actual data and the other information
on how the data should be read. To be more specific:

1. Actual data: A rectangular matrix of white-space separated numbers. Each column represents
a variable, each row an observation on each of the variables (spreadsheet style). Data columns
can be separated by spaces or tabs. The filename should have the suffix .gdt. By default the
data file is ASCII (plain text). Optionally it can be gzip-compressed to save disk space. You
can insert comments into a data file: if a line begins with the hash mark (#) the entire line is
ignored. This is consistent with gnuplot and octave data files.

2. Header : The data file must be accompanied by a header file which has the same basename as
the data file plus the suffix .hdr. This file contains, in order:

• (Optional) comments on the data, set off by the opening string (* and the closing string
*), each of these strings to occur on lines by themselves.

• (Required) list of white-space separated names of the variables in the data file. Names
are limited to 8 characters, must start with a letter, and are limited to alphanumeric
characters plus the underscore. The list may continue over more than one line; it is
terminated with a semicolon, ;.

• (Required) observations line of the form 1 1 85. The first element gives the data fre-
quency (1 for undated or annual data, 4 for quarterly, 12 for monthly). The second and
third elements give the starting and ending observations. Generally these will be 1 and
the number of observations respectively, for undated data. For time-series data one can
use dates of the form 1959.1 (quarterly, one digit after the point) or 1967.03 (monthly,
two digits after the point). See Chapter 6 for special use of this line in the case of panel
data.

• The keyword BYOBS.

65

/usr/share/gretl/data
/usr/share/gretl/data

Appendix A. Data file details 66

Here is an example of a well-formed data header file.

(*
DATA9-6:
Data on log(money), log(income) and interest rate from US.
Source: Stock and Watson (1993) Econometrica
(unsmoothed data) Period is 1900-1989 (annual data).
Data compiled by Graham Elliott.

*)
lmoney lincome intrate ;
1 1900 1989 BYOBS

The corresponding data file contains three columns of data, each having 90 entries. Three further
features of the “traditional” data format may be noted.

1. If the BYOBS keyword is replaced by BYVAR, and followed by the keyword BINARY, this indi-
cates that the corresponding data file is in binary format. Such data files can be written from
gretlcli using the store command with the -s flag (single precision) or the -o flag (double
precision).

2. If BYOBS is followed by the keyword MARKERS, gretl expects a data file in which the first column
contains strings (8 characters maximum) used to identify the observations. This may be handy
in the case of cross-sectional data where the units of observation are identifiable: countries,
states, cities or whatever. It can also be useful for irregular time series data, such as daily
stock price data where some days are not trading days — in this case the observations can
be marked with a date string such as 10/01/98. (Remember the 8-character maximum.) Note
that BINARY and MARKERS are mutually exclusive flags. Also note that the “markers” are not
considered to be a variable: this column does not have a corresponding entry in the list of
variable names in the header file.

3. If a file with the same base name as the data file and header files, but with the suffix .lbl,
is found, it is read to fill out the descriptive labels for the data series. The format of the
label file is simple: each line contains the name of one variable (as found in the header
file), followed by one or more spaces, followed by the descriptive label. Here is an example:
price New car price index, 1982 base year

If you want to save data in traditional format, use the -t flag with the store command, either in
the command-line program or in the console window of the GUI program.

A.3 Binary database details

A gretl database consists of two parts: an ASCII index file (with filename suffix .idx) containing
information on the series, and a binary file (suffix .bin) containing the actual data. Two examples
of the format for an entry in the idx file are shown below:

G0M910 Composite index of 11 leading indicators (1987=100)
M 1948.01 - 1995.11 n = 575
currbal Balance of Payments: Balance on Current Account; SA
Q 1960.1 - 1999.4 n = 160

The first field is the series name. The second is a description of the series (maximum 128 charac-
ters). On the second line the first field is a frequency code: M for monthly, Q for quarterly, A for
annual, B for business-daily (daily with five days per week) and D for daily (seven days per week).
No other frequencies are accepted at present. Then comes the starting date (N.B. with two digits
following the point for monthly data, one for quarterly data, none for annual), a space, a hyphen,
another space, the ending date, the string “n = ” and the integer number of observations. In the

Appendix A. Data file details 67

case of daily data the starting and ending dates should be given in the form YYYY/MM/DD. This
format must be respected exactly.

Optionally, the first line of the index file may contain a short comment (up to 64 characters) on the
source and nature of the data, following a hash mark. For example:

Federal Reserve Board (interest rates)

The corresponding binary database file holds the data values, represented as “floats”, that is, single-
precision floating-point numbers, typically taking four bytes apiece. The numbers are packed “by
variable”, so that the first n numbers are the observations of variable 1, the next m the observations
on variable 2, and so on.

Appendix B

Technical notes

Gretl is written in the C programming language, abiding as far as possible by the ISO/ANSI C
Standard (C90) although the graphical user interface and some other components necessarily make
use of platform-specific extensions.

The program was developed under Linux. The shared library and command-line client should
compile and run on any platform that (a) supports ISO/ANSI C, and (b) has the following libraries
installed: zlib (data compression), libxml (XML manipulation), and LAPACK (linear algebra support).
The homepage for zlib can be found at info-zip.org; libxml is at xmlsoft.org; LAPACK is at netlib.org.
If the GNU readline library is found on the host system this will be used for gretcli, providing a much
enhanced editable command line. See the readline homepage.

The graphical client program should compile and run on any system that, in addition to the above
requirements, offers GTK version 1.2.3 or higher (see gtk.org). As of this writing there are two main
variants of the GTK libraries: the 1.2 series and the 2.0 series which was launched in summer 2002.
These variants are mutually incompatible. gretl can be built using either one — the source code
package includes two sub-directories, gui for GTK 1.2 and gui2 for GTK 2.0. Use of GTK 2.0 is
recommended, since it offers many enhancements over GTK 1.2.

Gretl calls gnuplot for graphing. You can find gnuplot at gnuplot.info. As of this writing the most
recent official release is 4.0 (of April, 2004). The MS Windows version of gretl comes with a Windows
version gnuplot 4.0; the gretl website also offers an rpm of gnuplot 3.8j0 for x86 Linux systems.

Some features of gretl make use of Adrian Feguin’s gtkextra library. You can find gtkextra at
gtkextra.sourceforge.net. The relevant parts of this package are included (in slightly modified form)
with the gretl source distribution.

A binary version of the program is available for the Microsoft Windows platform (32-bit version,
i.e. Windows 95 or higher). This version was cross-compiled under Linux using mingw (the GNU C
compiler, gcc, ported for use with win32) and linked against the Microsoft C library, msvcrt.dll.
It uses Tor Lillqvist’s port of GTK 2.0 to win32. The (free, open-source) Windows installer program
is courtesy of Jordan Russell (jrsoftware.org).

We’re hopeful that some users with coding skills may consider gretl sufficiently interesting to be
worth improving and extending. The documentation of the libgretl API is by no means complete,
but you can find some details by following the link “Libgretl API docs” on the gretl homepage.

68

http://www.info-zip.org/pub/infozip/zlib/
http://xmlsoft.org/
http://www.netlib.org/lapack/
http://cnswww.cns.cwru.edu/~chet/readline/rltop.html
http://www.gtk.org/
http://www.gnuplot.info/
http://gtkextra.sourceforge.net/
http://www.jrsoftware.org/

Appendix C

Numerical accuracy

Gretl uses double-precision arithmetic throughout — except for the multiple-precision plugin in-
voked by the menu item “Model/High precision OLS” which represents floating-point values using a
number of bits given by the environment variable GRETL_MP_BITS (default value 256). The normal
equations of Least Squares are by default solved via Cholesky decomposition, which is accurate
enough for most purposes (with the option of using QR decomposition instead). The program has
been tested rather thoroughly on the statistical reference datasets provided by NIST (the U.S. Na-
tional Institute of Standards and Technology) and a full account of the results may be found on the
gretl website (follow the link “Numerical accuracy”).

Giovanni Baiocchi and Walter Distaso published a review of gretl in the Journal of Applied Economet-
rics (2003). We are grateful to Baiocchi and Distaso for their careful examination of the program,
which prompted the following modifications.

1. The reviewers pointed out that there was a bug in gretl’s “p-value finder”, whereby the pro-
gram printed the complement of the correct probability for negative values of z. This was
fixed in version 0.998 of the program (released July 9, 2002).

2. They also noted that the p-value finder produced inaccurate results for extreme values of x
(e.g. values of around 8 to 10 in the t distribution with 100 degrees of freedom). This too was
fixed in gretl version 0.998, with a switch to more accurate probability distribution code.

3. The reviewers noted a flaw in the presentation of regression coefficients in gretl, whereby
some coefficients could be printed to an unacceptably small number of significant figures.
This was fixed in version 0.999 (released August 25, 2002): now all the statistics associated
with a regression are printed to 6 significant figures.

4. It transpired from the reviewer’s tests that the numerical accuracy of gretl on MS Windows
was less than on Linux. For example, on the Longley data — a well-known “ill-conditioned”
dataset often used for testing econometrics programs — the Windows version of gretl was
getting some coefficients wrong at the 7th digit while the same coefficients were correct on
Linux. This anomaly was fixed in gretl version 1.0pre3 (released October 10, 2002).

The current version of gretl includes a “plugin” that runs the NIST linear regression test suite.
You can find this under the “Utilities” menu in the main window. When you run this test, the
introductory text explains the expected result. If you run this test and see anything other than the
expected result, please send a bug report to cottrell@wfu.edu.

As mentioned above, all regression statistics are printed to 6 significant figures in the current
version of gretl (except when the multiple-precision plugin is used, then results are given to 12
figures). If you want to examine a particular value more closely, first save it (for example, using
the genr command) then print it using print --ten (see the Gretl Command Reference). This will
show the value to 10 digits.

69

Appendix D

Advanced econometric analysis with free software

Gretl offers a reasonably full (and expanding) selection of estimators, and also offers various script-
ing constructs that may be useful in the creation of additional estimators. It does not, however,
support the creation and manipulation of matrices as such. If you are looking for this function-
ality in the realm of free, open-source software we recommend taking a look at either GNU R
(r-project.org) or GNU Octave (www.octave.org). These programs are very close to the commercial
programs S and Matlab respectively.

As mentioned above, gretl offers the facility of exporting data in the formats of both Octave and
R. In the case of Octave, the gretl data set is saved as a single matrix, X. You can pull the X matrix
apart if you wish, once the data are loaded in Octave; see the Octave manual for details. As for R,
the exported data file preserves any time series structure that is apparent to gretl. The series are
saved as individual structures. The data should be brought into R using the source() command.

Of these two programs, R is perhaps more likely to be of immediate interest to econometricians
since it offers more in the way of specialized statistical routines. Gretl therefore has a convenience
function for moving data quickly into R. Under gretl’s Session menu, you will find the entry “Start
GNU R”. This writes out an R version of the current gretl data set (Rdata.tmp, in the user’s gretl
directory), and sources it into a new R session. A few details on this follow.

First, the data are brought into R by writing a temporary version of .Rprofile in the current
working directory. (If such a file exists it is referenced by R at startup.) In case you already have a
personal .Rprofile in place, the original file is temporarily moved to .Rprofile.gretltmp, and
on exit from gretl it is restored. (If anyone can suggest a cleaner way of doing this I’d be happy to
hear of it.)

Second, the particular way R is invoked depends on the internal gretl variable Rcommand, whose
value may be set under the File, Preferences menu. The default command is RGui.exe under MS
Windows. Under X it is xterm -e R. Please note that at most three space-separated elements in
this command string will be processed; any extra elements are ignored.

70

http://www.r-project.org/
http://www.octave.org/

Appendix E

Listing of URLs

Below is a listing of the full URLs of websites mentioned in the text.

Estima (RATS) http://www.estima.com/

Gnome desktop homepage http://www.gnome.org/

GNU Multiple Precision (GMP) library http://swox.com/gmp/

GNU Octave homepage http://www.octave.org/

GNU R homepage http://www.r-project.org/

GNU R manual http://cran.r-project.org/doc/manuals/R-intro.pdf

Gnuplot homepage http://www.gnuplot.info/

Gnuplot manual http://ricardo.ecn.wfu.edu/gnuplot.html

Gretl data page http://gretl.sourceforge.net/gretl_data.html

Gretl homepage http://gretl.sourceforge.net/

GTK+ homepage http://www.gtk.org/

GTK+ port for win32 http://user.sgic.fi/~tml/gimp/win32/

Gtkextra homepage http://gtkextra.sourceforge.net/

InfoZip homepage http://www.info-zip.org/pub/infozip/zlib/

JRSoftware http://www.jrsoftware.org/

Mingw (gcc for win32) homepage http://www.mingw.org/

Minpack http://www.netlib.org/minpack/

Penn World Table http://pwt.econ.upenn.edu/

Readline homepage http://cnswww.cns.cwru.edu/~chet/readline/rltop.html

Readline manual http://cnswww.cns.cwru.edu/~chet/readline/readline.html

Xmlsoft homepage http://xmlsoft.org/

71

http://www.estima.com/
http://www.gnome.org/
http://swox.com/gmp/
http://www.octave.org/
http://www.r-project.org/
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://www.gnuplot.info/
http://ricardo.ecn.wfu.edu/gnuplot.html
http://gretl.sourceforge.net/gretl_data.html
http://gretl.sourceforge.net/
http://www.gtk.org/
http://user.sgic.fi/~tml/gimp/win32/
http://gtkextra.sourceforge.net/
http://www.info-zip.org/pub/infozip/zlib/
http://www.jrsoftware.org/
http://www.mingw.org/
http://www.netlib.org/minpack/
http://pwt.econ.upenn.edu/
http://cnswww.cns.cwru.edu/~chet/readline/rltop.html
http://cnswww.cns.cwru.edu/~chet/readline/readline.html
http://xmlsoft.org/

Bibliography

Akaike, H. (1974) “A New Look at the Statistical Model Identification”, IEEE Transactions on Auto-
matic Control, AC-19, pp. 716–23.

Baiocchi, G. and Distaso, W. (2003) “GRETL: Econometric software for the GNU generation”, Journal
of Applied Econometrics, 18, pp. 105–10.

Baxter, M. and King, R. G. (1995) “Measuring Business Cycles: Approximate Band-Pass Filters for
Economic Time Series”, National Bureau of Economic Research, Working Paper No. 5022.

Belsley, D., Kuh, E. and Welsch, R. (1980) Regression Diagnostics, New York: Wiley.

Berndt, E., Hall, B., Hall, R. and Hausman, J. (1974) “Estimation and Inference in Nonlinear Structural
Models”, Annals of Economic and Social Measurement, 3/4, pp. 653–65.

Box, G. E. P. and Muller, M. E. (1958) “A Note on the Generation of Random Normal Deviates”, Annals
of Mathematical Statistics, 29, pp. 610–11.

Davidson, R. and MacKinnon, J. G. (1993) Estimation and Inference in Econometrics, New York:
Oxford University Press.

Davidson, R. and MacKinnon, J. G. (2004) Econometric Theory and Methods, New York: Oxford
University Press.

Doornik, J. A. and Hansen, H. (1994) “An Omnibus Test for Univariate and Multivariate Normality”,
working paper, Nuffield College, Oxford.

Doornik, J. A. (1998) “Approximations to the Asymptotic Distribution of Cointegration Tests”, Jour-
nal of Economic Surveys, 12, pp. 573–93. Reprinted with corrections in M. McAleer and L. Oxley
(1999) Practical Issues in Cointegration Analysis, Oxford: Blackwell.

Fiorentini, G., Calzolari, G. and Panattoni, L. (1996) “Analytic Derivatives and the Computation of
GARCH Etimates”, Journal of Applied Econometrics, 11, pp. 399–417.

Greene, William H. (2000) Econometric Analysis, 4th edition, Upper Saddle River, NJ: Prentice-Hall.

Gujarati, Damodar N. (2003) Basic Econometrics, 4th edition, Boston, MA: McGraw-Hill.

Hamilton, James D. (1994) Time Series Analysis, Princeton, NJ: Princeton University Press.

Hodrick, Robert and Edward C. Prescott (1997) “Postwar U.S. Business Cycles: An Empirical Investi-
gation”, Journal of Money, Credit and Banking, 29, pp. 1–16.

Johansen, Søren (1995) Likelihood-Based Inference in Cointegrated Vector Autoregressive Models,
Oxford: Oxford University Press.

Kiviet, J. F. (1986) “On the Rigour of Some Misspecification Tests for Modelling Dynamic Relation-
ships”, Review of Economic Studies, 53, pp. 241–261.

Kwiatkowski, D., Phillips, P. C. B., Schmidt, P. and Shin, Y. (1992) “Testing the Null of Stationarity
Against the Alternative of a Unit Root: How Sure Are We That Economic Time Series Have a
Unit Root?”, Journal of Econometrics, 54, pp. 159–178.

Locke, C. (1976) “A Test for the Composite Hypothesis that a Population has a Gamma Distribution”,
Communications in Statistics — Theory and Methods, A5(4), pp. 351–364.

Lucchetti, R., Papi, L., and Zazzaro, A. (2001) “Banks’ Inefficiency and Economic Growth: A Micro
Macro Approach”, Scottish Journal of Political Economy, 48, pp. 400–424.

MacKinnon, J. G. (1996) “Numerical Distribution Functions for Unit Root and Cointegration Tests”,
Journal of Applied Econometrics, 11, pp. 601–618.

MacKinnon, J. G. and White, H. (1985) “Some Heteroskedasticity-Consistent Covariance Matrix Esti-
mators with Improved Finite Sample Properties”, Journal of Econometrics, 29, pp. 305–25.

72

Bibliography 73

Maddala, G. S. (1992) Introduction to Econometrics, 2nd edition, Englewood Cliffs, NJ: Prentice-Hall.

Matsumoto, M. and Nishimura, T. (1998) “Mersenne twister: a 623-dimensionally equidistributed
uniform pseudo-random number generator”, ACM Transactions on Modeling and Computer
Simulation, 8: 1.

Neter, J. Wasserman, W. and Kutner, M. H. (1990) Applied Linear Statistical Models, 3rd edition,
Boston, MA: Irwin.

R Core Development Team (2000) An Introduction to R, version 1.1.1.

Ramanathan, Ramu (2002) Introductory Econometrics with Applications, 5th edition, Fort Worth:
Harcourt.

Schwarz, G. (1978) “Estimating the dimension of a model”, Annals of Statistics, 6, pp. 461–64.

Shapiro, S. and Chen, L. (2001) “Composite Tests for the Gamma Distribution”, Journal of Quality
Technology, 33, pp. 47–59.

Silverman, B. W. (1986) Density Estimation for Statistics and Data Analysis, London: Chapman and
Hall.

Stock, James H. and Watson, Mark W. (2003) Introduction to Econometrics, Boston, MA: Addison-
Wesley.

Wooldridge, Jeffrey M. (2002) Introductory Econometrics, A Modern Approach, 2nd edition, Mason,
Ohio: South-Western.

	Gretl User's Guide
	License
	Table of contents
	1 Introduction
	1.1 Features at a glance
	1.2 Acknowledgements
	1.3 Installing the programs

	2 Getting started
	2.1 Let's run a regression
	2.2 Estimation output
	2.3 The main window menus
	2.4 The gretl toolbar

	3 Modes of working
	3.1 Command scripts
	3.2 Saving script objects
	3.3 The gretl console
	3.4 The Session concept

	4 Data files
	4.1 Native format
	4.2 Other data file formats
	4.3 Binary databases
	4.4 Creating a data file from scratch
	4.5 Missing data values
	4.6 Data file collections

	5 Special functions in genr
	5.1 Introduction
	5.2 Time-series filters
	5.3 Resampling and bootstrapping
	5.4 Handling missing values
	5.5 Retrieving internal variables

	6 Panel data
	6.1 Panel structure
	6.2 Dummy variables
	6.3 Lags and differences with panel data
	6.4 Pooled estimation
	6.5 Illustration: the Penn World Table

	7 Sub-sampling a dataset
	7.1 Introduction
	7.2 Setting the sample
	7.3 Restricting the sample
	7.4 Random sampling
	7.5 The Sample menu items

	8 Graphs and plots
	8.1 Gnuplot graphs
	8.2 Boxplots

	9 Nonlinear least squares
	9.1 Introduction and examples
	9.2 Initializing the parameters
	9.3 NLS dialog window
	9.4 Analytical and numerical derivatives
	9.5 Controlling termination
	9.6 Details on the code
	9.7 Numerical accuracy

	10 Maximum likelihood estimation
	10.1 Generic ML estimation with gretl
	10.2 Gamma estimation
	10.3 Stochastic frontier cost function
	10.4 GARCH models
	10.5 Analytical derivatives

	11 Model selection criteria
	11.1 Introduction
	11.2 Information criteria

	12 Loop constructs
	12.1 Introduction
	12.2 Loop control variants
	12.3 Progressive mode
	12.4 Loop examples

	13 User-defined functions
	13.1 Introduction
	13.2 Defining a function
	13.3 Calling a function
	13.4 Scope of variables
	13.5 Return values
	13.6 Error checking

	14 Cointegration and Vector Error Correction Models
	14.1 The Johansen cointegration test

	15 Troubleshooting gretl
	15.1 Bug reports
	15.2 Auxiliary programs

	16 The command line interface
	16.1 Gretl at the console
	16.2 Changes from Ramanathan's ESL

	A Data file details
	A.1 Basic native format
	A.2 Traditional ESL format
	A.3 Binary database details

	B Technical notes
	C Numerical accuracy
	D Advanced econometric analysis with free software
	E Listing of URLs
	Bibliography

