Economics 5243

Instructor Lee Adkins
Phone 744-8637
Office 303 BUS
Hours Wednesday 8:30-11:30 and by appointment
E-mail LADKINS@okstate.edu
WWW http://cba.okstate.edu/~ladkins (at least for now . . .)

1 Purpose

The objective of this course is for you to become knowledgeable users of the linear regression model. The topics include the estimation and specification of the linear regression model, imposition and testing of exact linear parameter restrictions, confidence intervals, estimation of nonlinear models, and an introduction to generalized least squares.

In order to become functionally literate in applied econometrics, it is also necessary for you to learn some of the basics of econometric theory. The basic tools of econometric theory will help to slow the rate of depreciation of your hard-earned econometric human capital. It is well worth your time to learn these tools now, especially if you intend to do any empirical work in the future.

2 Textbooks

Required

Most of our lectures and class assignments will come from this book. I intend to follow it very carefully. The major shortcoming of this book is that it doesn’t contain many empirical examples. Also, it can be rather terse at times and you
may need to supplement your reading in ETM with one of the recommended
books below. In particular, Wooldridge’s *Introductory Econometrics: A Modern
Approach* is a nice upper level undergraduate book that should help to fill in
the gaps. It also has a number of very good data sets and empirical examples
that we may use from time to time. The data sets and empirical examples from
the book are available through links on our class website.

You can also check out the last two chapters in Stock and Watson’s book listed
below for very nice summaries of the linear model and general linear model. I’m
using this book in the undergraduate course and it will be available for a while
at the OSU bookstore.

Recommended

Jeffrey Wooldridge, Introductory Econometrics: A Modern Approach,

Other Sources

Jan Kmenta, *The Elements of Econometrics.*

Judge et al., *The Theory and Practice of Econometrics,* 2nd Edition,
Wiley, 1985. (a.k.a., ”Big Judge.”)

3 Prerequisites

This course requires you to work with probability, statistics, calculus, matrix
algebra, and to write computer programs (as well as learn econometrics). If
you have any doubts about whether your experience is sufficient, please talk
to me about it. At a minimum, I assume that you know the basics of differential
calculus, matrix algebra, probability theory, and how to use a Windows
based microcomputer. If you have any doubts about whether your experience
is sufficient, please talk to me about it.
4 Course Outline

Chapter 1 Regression Models 1
1.1 Introduction 1
1.2 Distributions, Densities, and Moments 3
1.3 The Specification of Regression Models 15
1.4 Matrix Algebra 22
1.5 Method-of-Moments Estimation 30
1.6 Notes on the Exercises 37

Chapter 2 The Geometry of Linear Regression 42
2.1 Introduction 42
2.2 The Geometry of Vector Spaces 43
2.3 The Geometry of OLS Estimation 54
2.4 The Frisch–Waugh–Lovell Theorem 62
2.5 Applications of the FWL Theorem 69
2.6 Influential Observations and Leverage 76
2.7 Final Remarks 81

Chapter 3 The Statistical Properties of Ordinary Least Squares 86
3.1 Introduction 86
3.2 Are OLS Parameter Estimators Unbiased? 88
3.3 Are OLS Parameter Estimators Consistent? 92
3.4 The Covariance Matrix of the OLS Parameter Estimates 97
3.5 Efficiency of the OLS Estimator 104
3.6 Residuals and Error Terms 107
3.7 Misspecification of Linear Regression Models 111
3.8 Measures of Goodness of Fit 115
3.9 Final Remarks 118

Chapter 4 Hypothesis Testing in Linear Regression Models 122
4.1 Introduction 122
4.2 Basic Ideas 122
4.3 Some Common Distributions 129
4.4 Exact Tests in the Classical Normal Linear Model 138
4.5 Large-Sample Tests in Linear Regression Models 146
4.6 Simulation-Based Tests 155
4.7 The Power of Hypothesis Tests 166
4.8 Final Remarks 172

Chapter 5 Confidence Intervals 177
5.1 Introduction 177
5.2 Exact and Asymptotic Confidence Intervals 178
5.3 Bootstrap Confidence Intervals 185
5.4 Confidence Regions 189
5.5 Heteroskedasticity-Consistent Covariance Matrices 196
5.6 The Delta Method 202
5.7 Final Remarks 209

Chapter 6 Nonlinear Regression 213
6.1 Introduction 213
6.2 Method-of-Moments Estimators for Nonlinear Models 215
6.3 Nonlinear Least Squares 224
6.4 Computing NLS Estimates 228
6.5 The Gauss-Newton Regression 235
6.6 One-Step Estimation 240
6.7 Hypothesis Testing 243
6.8 Heteroskedasticity-Robust Tests 250
6.9 Final Remarks 253

Chapter 7 Generalized Least Squares and Related Topics 257
7.1 Introduction 257
7.2 The GLS Estimator 258
7.3 Computing GLS Estimates 260
7.4 Feasible Generalized Least Squares 264
7.5 Heteroskedasticity 266
7.6 Autoregressive and Moving-Average Processes 270
7.7 Testing for Serial Correlation 275
7.8 Estimating Models with Autoregressive Errors 285
7.9 Specification Testing and Serial Correlation 292
7.10 Models for Panel Data 298
7.11 Final Remarks 305

Chapter 8 IV Estimation (time permitting)

5 Computer Assignments

Early in the course you will begin to use the computer to do portions of your homework. You will be responsible for learning to use the STATA software that is available in the CBA lab. You may also purchase a 1 year license for STATA directly from the STATA corporation. Follow the link from our class page on
my website if this interests you.

6 Grades

Your grade in this class will be based on your performance on 3 exams and on homework assignments.

<table>
<thead>
<tr>
<th>Grade Weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam 1</td>
</tr>
<tr>
<td>Exam 2</td>
</tr>
<tr>
<td>Exam 3</td>
</tr>
<tr>
<td>Homework</td>
</tr>
<tr>
<td>27%</td>
</tr>
<tr>
<td>27%</td>
</tr>
<tr>
<td>27%</td>
</tr>
<tr>
<td>19%</td>
</tr>
</tbody>
</table>

Grades will be assigned according to the following scale:

<table>
<thead>
<tr>
<th>Grades</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%–100%</td>
</tr>
<tr>
<td>76%–90%</td>
</tr>
<tr>
<td>60%–75%</td>
</tr>
<tr>
<td>50%–60%</td>
</tr>
<tr>
<td>< 50%</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>F</td>
</tr>
</tbody>
</table>

All exams must be taken at the designated time. No make up exams will be given. If you miss an exam you will receive a grade of zero.

Unless you are specifically told otherwise by me, all homework must be turned in at the beginning of the class period on the date that it is due. Homework will not be accepted if late.

7 Attendance

Regular attendance is expected. You are responsible for any material you miss because of absence. In general, I do not permit students to copy my notes. If you miss class and need a copy of the notes, please obtain them from one of your classmates.
8 Cheating Policy

Cheating will not be tolerated. Any violation of the University’s academic dishonesty policy will be prosecuted according to University regulations. You will receive a grade of 0 on any test or assignment you are caught cheating on. In addition, you are responsible for the security of your work (in other words, if someone copies your work, you will also receive a zero on the test or assignment).