
Motivation
Estimators

Design
Results

Testing Parameter Significance in Instrumental
Variables Probit Estimators

Lee C. Adkins

June 23, 2010

Lee C. Adkins IV Estimation



Motivation
Estimators

Design
Results

Motivation
Different Results

Estimators
LIML
Newey
Small Sample Performance?

Design
Goals
Equations
Regressors and Errors
Parameters

Results
Download Complete Paper

Lee C. Adkins IV Estimation



Motivation
Estimators

Design
Results

Different Results

Motivation

I Does managerial compensation affect the decision to hedge
using foreign exchange derivatives?

I Some of the compensation variables are endogenous.

I Stata offers 2 choices: Newey’s 2 step and MLE, but produce
different results.
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Parameters that change significance

AGLS ML

Leverage 21.775 12.490**
(0.104) (0.021)

Total Assets 0.365** 0.190
(0.032) (0.183)

Return on Equity -0.034 -0.020*
(0.230) (0.083)

Market-to-Book ratio -0.002 -0.001*
(0.132) (0.098)

Dividends Paid -8.43E-07 -4.84E-07**
(0.134) (0.044)
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Maximum Likelihood

ML is computationally feasible in many circumstances. When it
works it has some desirable large sample properties:

I Asymptotically normally distributed

I Asymptotically efficient

I Approximate significance tests of parameters are statistically
valid and, if the MLE can be computed, the tests are easy to
compute
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Newey’s (two-step) estimator–AGLS

This estimator will almost certainly be computable.

I Asymptotically normally distributed

I Asymptotically efficient is some cases

I Approximate significance tests of parameters are statistically
valid and easy to compute

I Much easier to compute the estimators, making it possible to
bootstrap or jackknife

Lee C. Adkins IV Estimation



Motivation
Estimators

Design
Results

LIML
Newey
Small Sample Performance?

Newey’s (two-step) estimator–AGLS

This estimator will almost certainly be computable.

I Asymptotically normally distributed

I Asymptotically efficient is some cases

I Approximate significance tests of parameters are statistically
valid and easy to compute

I Much easier to compute the estimators, making it possible to
bootstrap or jackknife

Lee C. Adkins IV Estimation



Motivation
Estimators

Design
Results

LIML
Newey
Small Sample Performance?

Which performs better in small samples?

.

I Bias and MSE (Rivers and Vuong, 1988)

I Significance tests

I Power
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Estimators

.

I Probit and RROLS (Iwata 2001)

I RRGMM (Iwata 2001)

I Plug-in w/Murphy-Topel Covariance

I AGLS (Newey 1987)

I Pretest (for endogeneity–Probit or AGLS)

I MLE
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Design Goals

The basic design was first used by Rivers and Vuong. They vary
degree of correlation between probit and the reduced form to study
the bias and mse of several estimators.
I go a few steps further. In addition to Bias and MSE I look at:

I Instrument Strength – RV consider only very strong
instruments in their design.

I Different proportions of 1s and 0s are considered (no effect)

I Minimize the scaling problem

I Focus on significance test rather than bias
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Probit and Reduced Form

I (Probit) The underlying regression equation:

y∗1i = γy2i + β1 + β2x2i + ui (1)

y∗1i is latent and is observed in one of two states: coded 0 or 1

I (Reduced Form) In the just identified case, the endogenous
regressor y2i is determined

y2i = π1 + π2x2i + π3x3i + νi (2)

I and the over-identified case,

y2i = π1 + π2x2i + π3x3i + π4x4i + νi (3)
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Design: Regressors and residuals

I The exogenous variables (x2i , x3i , x4i ) are drawn from
multivariate normal distribution with zero means, variances
equal 1 and covariances of .5.

I The disturbances are creates using

ui = λνi + ηi (4)

I νi and ηi standard normals

I λ is varied on the interval [−2, 2] to generate correlation
between the endogenous explanatory variable and the
regression’s error.
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Design: Parameters

I Reduced Form: θπ where
π = {π1 = 0, π2 = 1, π3 = 1, π4 = −1} and θ is varied on the
interval [.05, 1]. As θ gets bigger, instruments get stronger.

I When the model is just identified, π4 = 0.

I In the probit regression: γ = 0 and β2 = −1.

I The intercept, β1 takes the value −2, 0, 2, which corresponds
roughly to expected proportions of y1i = 1 of 25%, 50%, and
75%, respectively.

I Sample sizes: 200 and 1000
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RROLS, Probit, AGLS

I When there is no endogeneity, RROLS and probit work well
(as expected).

I It is clear that RROLS and Probit should be avoided when you
have an endogenous regressor.

I AGLS performs reasonably well, but size is too big especially
as endogeneity worsens. RRGMM works a bit better when
endogeneity is severe.
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Instrument strength, sample size, pretesting

I RRGMM outperforms AGLS when instruments are moderately
strong.

I Larger sample sizes improves performance of AGLS and
RRGMM.

I Pretesting for endogeneity is useful when samples are small
and the available instruments are weak.
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AGLS, MLE

I In small samples, AGLS outperforms MLE. It also is better
when instruments are weak in larger samples.

I MLE is more precise, but seriously underestimates standard
errors.
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Table 2b Computed rejection rate for 10% nominal t-tests.  Sample size is 1000.
The model is just identified.  The approximate proportion of 1's in each sample is .5.

θ λ RRrols Probit RRgmm IVP AGLS Pretest
0.05 2 1.000 1.000 0.091 0.102 0.111 0.528
0.05 1 1.000 1.000 0.054 0.066 0.129 0.803
0.05 0.5 1.000 1.000 0.016 0.021 0.102 0.929
0.05 0 0.096 0.102 0.004 0.007 0.095 0.182
0.05 -0.5 1.000 1.000 0.036 0.021 0.105 0.929
0.05 -1 1.000 1.000 0.080 0.064 0.128 0.818
0.05 -2 1.000 1.000 0.105 0.101 0.122 0.511

0.1 2 1.000 1.000 0.059 0.065 0.101 0.136
0.1 1 1.000 1.000 0.059 0.079 0.117 0.496
0.1 0.5 1.000 1.000 0.037 0.042 0.106 0.815
0.1 0 0.094 0.095 0.055 0.038 0.107 0.183
0.1 -0.5 1.000 1.000 0.067 0.044 0.115 0.809
0.1 -1 1.000 1.000 0.097 0.074 0.101 0.521
0.1 -2 1.000 1.000 0.103 0.097 0.134 0.185

0.15 2 1.000 1.000 0.091 0.092 0.122 0.123
0.15 1 1.000 1.000 0.059 0.070 0.122 0.228
0.15 0.5 1.000 1.000 0.069 0.071 0.108 0.629
0.15 0 0.109 0.109 0.087 0.073 0.105 0.193
0.15 -0.5 1.000 1.000 0.087 0.058 0.094 0.666
0.15 -1 1.000 1.000 0.097 0.067 0.092 0.210
0.15 -2 1.000 1.000 0.103 0.095 0.120 0.120
0.25 2 1.000 1.000 0.093 0.093 0.140 0.140
0.25 1 1.000 1.000 0.090 0.086 0.127 0.127
0.25 0.5 1.000 1.000 0.088 0.078 0.113 0.348
0.25 0 0.098 0.091 0.093 0.081 0.099 0.165
0.25 -0.5 1.000 1.000 0.104 0.096 0.111 0.348
0.25 -1 1.000 1.000 0.091 0.071 0.112 0.112
0.25 -2 1.000 1.000 0.104 0.084 0.130 0.130

0.5 2 1.000 1.000 0.101 0.080 0.127 0.127
0.5 1 1.000 1.000 0.094 0.078 0.104 0.104
0.5 0.5 1.000 1.000 0.092 0.084 0.095 0.095
0.5 0 0.119 0.116 0.109 0.106 0.107 0.179
0.5 -0.5 1.000 1.000 0.099 0.087 0.102 0.102
0.5 -1 1.000 1.000 0.112 0.091 0.117 0.117
0.5 -2 1.000 1.000 0.103 0.090 0.127 0.127

1 2 1.000 1.000 0.103 0.094 0.127 0.127
1 1 1.000 1.000 0.115 0.107 0.129 0.129
1 0.5 1.000 1.000 0.110 0.099 0.112 0.112
1 0 0.103 0.091 0.093 0.083 0.083 0.124
1 -0.5 1.000 1.000 0.117 0.101 0.108 0.108
1 -1 1.000 1.000 0.113 0.093 0.126 0.126
1 -2 1.000 1.000 0.090 0.079 0.120 0.120

RMSE 0.772 0.773 0.020 0.024 0.015 0.212

Design Estimator



Table 4a:  Comparison of AGLS and ML.  Sample size = 200, model just identified.

Upper panel compares the percentiles of the computed t‐ratio and its summary statistics.

Lower panel compares the percentiles to the p‐value of the corresponding t‐ratio.




AGLS ML AGLS ML AGLS ML AGLS ML

1% 1 854 1 78E+01 2 984 7 583 2 233 2 666 2 489 2 217

‐0.25 ‐2 ‐0.25 ‐2

0.15 0.15 1 1

1% ‐1.854 ‐1.78E+01 ‐2.984 ‐7.583 ‐2.233 ‐2.666 ‐2.489 ‐2.217

5% ‐1.329 ‐6.453 ‐2.189 ‐3.227 ‐1.566 ‐1.677 ‐1.686 ‐1.441

10% ‐1.074 ‐2.880 ‐1.724 ‐2.203 ‐1.244 ‐1.284 ‐1.265 ‐1.108

25% ‐0.534 ‐0.817 ‐0.873 ‐0.920 ‐0.599 ‐0.601 ‐0.543 ‐0.509

50% 0.032 0.042 ‐0.130 ‐0.157 0.098 0.099 0.163 0.168

75% 0.562 1.117 0.233 0.516 0.810 0.877 0.708 0.800

90% 0.901 2.561 0.429 1.267 1.279 1.500 1.199 1.535

95% 1.061 3.797 0.512 1.769 1.603 1.958 1.432 1.918

99% 1.425 7.130 0.688 2.583 2.166 3.173 1.792 2.801

 Variance  0.567 13.113 0.736 3.057 0.964 1.325 0.910 1.092

 Skewness  ‐0.304 ‐2.375 ‐1.202 ‐1.801 ‐0.123 0.204 ‐0.584 0.200

 Kurtosis  2.578 12.801 4.013 12.317 2.606 3.755 3.326 3.584

W (p value < 0001 < 0001 < 0001 < 0001 0 00432 0 00012 0 0001 0 0029

Summary Statistics for the t‐ratio and p‐value for a test for normality

W (p‐value <.0001 <.0001 <.0001 <.0001 0.00432 0.00012 0.0001 0.0029

5% 0.154 0.000 0.029 3.74E‐04 0.058 0.019 0.064 0.034

10% 0.227 0.000 0.085 1.42E‐02 0.114 0.067 0.119 0.084

Table 4b:  Comparison of AGLS and ML.  Sample size = 1000, model just identified.

Upper panel compares the percentiles of the computed t‐ratio and its summary statistics.

5% and 10% percentiles of the p‐value for the two‐sided t‐test

Upper panel compares the percentiles of the computed t ratio and its summary statistics.

Lower panel compares the percentiles to the p‐value of the corresponding t‐ratio.




AGLS ML AGLS ML AGLS ML AGLS ML

1% ‐2.327 ‐2.81E+00 ‐3.055 ‐2.105 ‐2.367 ‐2.413 ‐2.507 ‐2.233

5% ‐1.666 ‐1.782 ‐1.922 ‐1.401 ‐1.670 ‐1.679 ‐1.619 ‐1.495

0.25 0.25 1 1

‐0.25 ‐2 ‐0.25 ‐2

10% ‐1.326 ‐1.366 ‐1.536 ‐1.190 ‐1.321 ‐1.319 ‐1.263 ‐1.183

25% ‐0.631 ‐0.634 ‐0.672 ‐0.587 ‐0.599 ‐0.596 ‐0.628 ‐0.606

50% 0.013 0.001 0.018 0.019 0.024 0.024 0.104 0.104

75% 0.716 0.761 0.598 0.719 0.754 0.769 0.702 0.734

90% 1.216 1.434 0.979 1.423 1.317 1.380 1.227 1.337

95% 1.438 1.840 1.183 1.923 1.635 1.739 1.602 1.802

99% 1 941 2 759 1 387 2 741 2 242 2 467 2 145 2 54199% 1.941 2.759 1.387 2.741 2.242 2.467 2.145 2.541

 Variance  0.926 1.266 0.968 1.032 1.041 1.107 0.963 0.996

 Skewness  ‐0.237 0.050 ‐0.910 0.381 ‐0.104 0.009 ‐0.316 0.062

 Kurtosis  2.732 3.665 3.956 3.386 2.957 3.160 3.202 3.139

W (p‐value 0.02905 0.0067 <.0001 <.0001 0.5446 0.8239 0.0001 0.3145

Summary Statistics for the t‐ratio and p‐value for a test for normality

5% and 10% percentiles of the p‐value for the two‐sided t‐test

5% 0.055 0.023 0.055 0.037 0.046 0.040 0.058 0.048

10% 0.100 0.070 0.123 0.090 0.098 0.088 0.107 0.094

p p
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